![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srhmsubclem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for srhmsubc 20654. (Contributed by AV, 19-Feb-2020.) |
Ref | Expression |
---|---|
srhmsubc.s | ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring |
srhmsubc.c | ⊢ 𝐶 = (𝑈 ∩ 𝑆) |
srhmsubc.j | ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) |
Ref | Expression |
---|---|
srhmsubclem3 | ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srhmsubc.j | . . . 4 ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠))) |
3 | oveq12 7425 | . . . 4 ⊢ ((𝑟 = 𝑋 ∧ 𝑠 = 𝑌) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌)) | |
4 | 3 | adantl 480 | . . 3 ⊢ (((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑟 = 𝑋 ∧ 𝑠 = 𝑌)) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌)) |
5 | simpl 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ∈ 𝐶) | |
6 | 5 | adantl 480 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) |
7 | simpr 483 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ 𝐶) | |
8 | 7 | adantl 480 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) |
9 | ovexd 7451 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 RingHom 𝑌) ∈ V) | |
10 | 2, 4, 6, 8, 9 | ovmpod 7570 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋 RingHom 𝑌)) |
11 | eqid 2726 | . . 3 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
12 | eqid 2726 | . . 3 ⊢ (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈)) | |
13 | simpl 481 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑈 ∈ 𝑉) | |
14 | eqid 2726 | . . 3 ⊢ (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈)) | |
15 | srhmsubc.s | . . . . 5 ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
16 | srhmsubc.c | . . . . 5 ⊢ 𝐶 = (𝑈 ∩ 𝑆) | |
17 | 15, 16 | srhmsubclem2 20652 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) |
18 | 5, 17 | sylan2 591 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) |
19 | 15, 16 | srhmsubclem2 20652 | . . . 4 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑌 ∈ 𝐶) → 𝑌 ∈ (Base‘(RingCat‘𝑈))) |
20 | 7, 19 | sylan2 591 | . . 3 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ (Base‘(RingCat‘𝑈))) |
21 | 11, 12, 13, 14, 18, 20 | ringchom 20626 | . 2 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋(Hom ‘(RingCat‘𝑈))𝑌) = (𝑋 RingHom 𝑌)) |
22 | 10, 21 | eqtr4d 2769 | 1 ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 ∩ cin 3945 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 Basecbs 17208 Hom chom 17272 Ringcrg 20212 RingHom crh 20447 RingCatcringc 20619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-hom 17285 df-cco 17286 df-0g 17451 df-resc 17822 df-estrc 18141 df-mhm 18768 df-ghm 19203 df-mgp 20114 df-ur 20161 df-ring 20214 df-rhm 20450 df-ringc 20620 |
This theorem is referenced by: srhmsubc 20654 |
Copyright terms: Public domain | W3C validator |