Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdco | Structured version Visualization version GIF version |
Description: Mapping a word by a function. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
wrdco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ Word 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴⟶𝐵) | |
2 | wrdf 14218 | . . . 4 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
4 | fco 6621 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑊:(0..^(♯‘𝑊))⟶𝐴) → (𝐹 ∘ 𝑊):(0..^(♯‘𝑊))⟶𝐵) | |
5 | 1, 3, 4 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊):(0..^(♯‘𝑊))⟶𝐵) |
6 | iswrdi 14217 | . 2 ⊢ ((𝐹 ∘ 𝑊):(0..^(♯‘𝑊))⟶𝐵 → (𝐹 ∘ 𝑊) ∈ Word 𝐵) | |
7 | 5, 6 | syl 17 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ Word 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∘ ccom 5593 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 0cc0 10870 ..^cfzo 13379 ♯chash 14040 Word cword 14213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-n0 12232 df-z 12318 df-uz 12580 df-fz 13237 df-fzo 13380 df-hash 14041 df-word 14214 |
This theorem is referenced by: cshco 14545 swrdco 14546 frmdgsum 18497 frmdss2 18498 frmdup1 18499 frmdup3lem 18501 efginvrel2 19329 efginvrel1 19330 frgp0 19362 frgpinv 19366 frgpuplem 19374 frgpupf 19375 frgpup1 19377 frgpup3lem 19379 cycpmconjv 31403 mrsubff 33468 mrsubccat 33474 |
Copyright terms: Public domain | W3C validator |