ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxccatin12lem3 GIF version

Theorem pfxccatin12lem3 11259
Description: Lemma 3 for pfxccatin12 11260. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatin12lem3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))

Proof of Theorem pfxccatin12lem3
StepHypRef Expression
1 simpll 527 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfzo0 10378 . . . . . . . . 9 (𝐾 ∈ (0..^(𝐿𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)))
3 swrdccatin2.l . . . . . . . . . . . . 13 𝐿 = (♯‘𝐴)
4 lencl 11070 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
5 elfz2nn0 10304 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
6 nn0addcl 9400 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 𝑀) ∈ ℕ0)
76ex 115 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
873ad2ant1 1042 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝑀 ∈ ℕ0 → (𝐾 + 𝑀) ∈ ℕ0))
98com12 30 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1093ad2ant1 1042 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (𝐾 + 𝑀) ∈ ℕ0))
1110imp 124 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) ∈ ℕ0)
12 elnnz 9452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿𝑀) ∈ ℕ ↔ ((𝐿𝑀) ∈ ℤ ∧ 0 < (𝐿𝑀)))
13 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
14 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
15 posdif 8598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
1613, 14, 15syl2an 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿 ↔ 0 < (𝐿𝑀)))
17 elnn0z 9455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
18 0re 8142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 ∈ ℝ
19 zre 9446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
20 lelttr 8231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
2118, 19, 14, 20mp3an3an 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
22 nn0z 9462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2322anim1i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → (𝐿 ∈ ℤ ∧ 0 < 𝐿))
24 elnnz 9452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
2523, 24sylibr 134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐿 ∈ ℕ0 ∧ 0 < 𝐿) → 𝐿 ∈ ℕ)
2625ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐿 ∈ ℕ0 → (0 < 𝐿𝐿 ∈ ℕ))
2726adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 < 𝐿𝐿 ∈ ℕ))
2821, 27syld 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → ((0 ≤ 𝑀𝑀 < 𝐿) → 𝐿 ∈ ℕ))
2928expd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℕ0) → (0 ≤ 𝑀 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3029impancom 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3117, 30sylbi 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝐿 ∈ ℕ)))
3231imp 124 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝐿 ∈ ℕ))
3316, 32sylbird 170 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (0 < (𝐿𝑀) → 𝐿 ∈ ℕ))
3433com12 30 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3512, 34simplbiim 387 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐿𝑀) ∈ ℕ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
36353ad2ant2 1043 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ))
3736com12 30 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
38373adant3 1041 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → 𝐿 ∈ ℕ))
3938imp 124 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → 𝐿 ∈ ℕ)
40 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
4140adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐾 ∈ ℝ)
42133ad2ant1 1042 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝑀 ∈ ℝ)
4342adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝑀 ∈ ℝ)
44143ad2ant2 1043 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → 𝐿 ∈ ℝ)
4544adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → 𝐿 ∈ ℝ)
4641, 43, 45ltaddsubd 8688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿)) → ((𝐾 + 𝑀) < 𝐿𝐾 < (𝐿𝑀)))
4746exbiri 382 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 < (𝐿𝑀) → (𝐾 + 𝑀) < 𝐿)))
4847com23 78 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝐾 < (𝐿𝑀) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿)))
4948imp 124 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
50493adant2 1040 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 + 𝑀) < 𝐿))
5150impcom 125 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → (𝐾 + 𝑀) < 𝐿)
5211, 39, 513jca 1201 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) ∧ (𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀))) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))
5352ex 115 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
5453a1d 22 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
555, 54sylbi 121 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
5655imp 124 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
57562a1i 27 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
58 eleq1 2292 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0))
59 eleq1 2292 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ ↔ 𝐿 ∈ ℕ))
60 breq2 4086 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) < (♯‘𝐴) ↔ (𝐾 + 𝑀) < 𝐿))
6159, 603anbi23d 1349 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) = 𝐿 → (((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))
6261imbi2d 230 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) = 𝐿 → (((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))) ↔ ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿))))
6362imbi2d 230 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = 𝐿 → (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))) ↔ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝐾 + 𝑀) < 𝐿)))))
6457, 58, 633imtr4d 203 . . . . . . . . . . . . . 14 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
6564eqcoms 2232 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))))
663, 4, 65mpsyl 65 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6766adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))))
6867imp 124 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
6968com12 30 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝐿𝑀) ∈ ℕ ∧ 𝐾 < (𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
702, 69sylbi 121 . . . . . . . 8 (𝐾 ∈ (0..^(𝐿𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7170adantl 277 . . . . . . 7 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴))))
7271impcom 125 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
73 elfzo0 10378 . . . . . 6 ((𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝐾 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝐾 + 𝑀) < (♯‘𝐴)))
7472, 73sylibr 134 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴)))
75 df-3an 1004 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
761, 74, 75sylanbrc 417 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))))
77 ccatval1 11127 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
7876, 77syl 14 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐴‘(𝐾 + 𝑀)))
793pfxccatin12lem2c 11257 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
80 simpl 109 . . . 4 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ (0..^(𝑁𝑀)))
81 swrdfv 11180 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
8279, 80, 81syl2an 289 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
83 simplll 533 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐴 ∈ Word 𝑉)
84 simplrl 535 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ (0...𝐿))
853eleq1i 2295 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
86 elnn0uz 9756 . . . . . . . . 9 (𝐿 ∈ ℕ0𝐿 ∈ (ℤ‘0))
87 eluzfz2 10224 . . . . . . . . 9 (𝐿 ∈ (ℤ‘0) → 𝐿 ∈ (0...𝐿))
8886, 87sylbi 121 . . . . . . . 8 (𝐿 ∈ ℕ0𝐿 ∈ (0...𝐿))
893oveq2i 6011 . . . . . . . 8 (0...𝐿) = (0...(♯‘𝐴))
9088, 89eleqtrdi 2322 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
9185, 90sylbir 135 . . . . . 6 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
924, 91syl 14 . . . . 5 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
9392ad3antrrr 492 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ (0...(♯‘𝐴)))
94 simprr 531 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝐿𝑀)))
95 swrdfv 11180 . . . 4 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9683, 84, 93, 94, 95syl31anc 1274 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾) = (𝐴‘(𝐾 + 𝑀)))
9778, 82, 963eqtr4d 2272 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾))
9897ex 115 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995   + caddc 7998   < clt 8177  cle 8178  cmin 8313  cn 9106  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334  chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173
This theorem is referenced by:  pfxccatin12  11260
  Copyright terms: Public domain W3C validator