MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcn4 Structured version   Visualization version   GIF version

Theorem metcn4 25228
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.3 of [Munkres] p. 128. (Contributed by NM, 13-Jun-2007.) (Revised by Mario Carneiro, 4-May-2014.)
Hypotheses
Ref Expression
metcnp4.3 𝐽 = (MetOpen‘𝐶)
metcnp4.4 𝐾 = (MetOpen‘𝐷)
metcnp4.5 (𝜑𝐶 ∈ (∞Met‘𝑋))
metcnp4.6 (𝜑𝐷 ∈ (∞Met‘𝑌))
metcn4.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
metcn4 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝑓,𝐶   𝐷,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝐽,𝑥   𝜑,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝑓,𝐾,𝑥

Proof of Theorem metcn4
StepHypRef Expression
1 metcnp4.5 . . 3 (𝜑𝐶 ∈ (∞Met‘𝑋))
2 metcnp4.3 . . . 4 𝐽 = (MetOpen‘𝐶)
32met1stc 24426 . . 3 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω)
41, 3syl 17 . 2 (𝜑𝐽 ∈ 1stω)
52mopntopon 24344 . . 3 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
61, 5syl 17 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 metcnp4.6 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑌))
8 metcnp4.4 . . . 4 𝐾 = (MetOpen‘𝐷)
98mopntopon 24344 . . 3 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
107, 9syl 17 . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
11 metcn4.7 . 2 (𝜑𝐹:𝑋𝑌)
124, 6, 10, 111stccn 23367 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109   class class class wbr 5095  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  cn 12147  ∞Metcxmet 21265  MetOpencmopn 21270  TopOnctopon 22814   Cn ccn 23128  𝑡clm 23130  1stωc1stc 23341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13430  df-topgen 17366  df-psmet 21272  df-xmet 21273  df-bl 21275  df-mopn 21276  df-top 22798  df-topon 22815  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-cn 23131  df-cnp 23132  df-lm 23133  df-1stc 23343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator