| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quartlem2 | Structured version Visualization version GIF version | ||
| Description: Closure lemmas for quart 26787. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
| quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
| quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
| quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
| quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
| quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
| quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
| Ref | Expression |
|---|---|
| quartlem2 | ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quart.u | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
| 2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 6 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
| 7 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
| 8 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | quart1cl 26780 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
| 10 | 9 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 11 | 10 | sqcld 14069 | . . . 4 ⊢ (𝜑 → (𝑃↑2) ∈ ℂ) |
| 12 | 1nn0 12418 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 13 | 2nn 12219 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 12, 13 | decnncl 12629 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 15 | 14 | nncni 12156 | . . . . 5 ⊢ ;12 ∈ ℂ |
| 16 | 9 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 17 | mulcl 11112 | . . . . 5 ⊢ ((;12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (;12 · 𝑅) ∈ ℂ) | |
| 18 | 15, 16, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;12 · 𝑅) ∈ ℂ) |
| 19 | 11, 18 | addcld 11153 | . . 3 ⊢ (𝜑 → ((𝑃↑2) + (;12 · 𝑅)) ∈ ℂ) |
| 20 | 1, 19 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 21 | quart.v | . . 3 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
| 22 | 2cn 12221 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 23 | 3nn0 12420 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
| 24 | expcl 14004 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ) | |
| 25 | 10, 23, 24 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝑃↑3) ∈ ℂ) |
| 26 | mulcl 11112 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ) | |
| 27 | 22, 25, 26 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑃↑3)) ∈ ℂ) |
| 28 | 27 | negcld 11480 | . . . . 5 ⊢ (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ) |
| 29 | 2nn0 12419 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 30 | 7nn 12238 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
| 31 | 29, 30 | decnncl 12629 | . . . . . . 7 ⊢ ;27 ∈ ℕ |
| 32 | 31 | nncni 12156 | . . . . . 6 ⊢ ;27 ∈ ℂ |
| 33 | 9 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 34 | 33 | sqcld 14069 | . . . . . 6 ⊢ (𝜑 → (𝑄↑2) ∈ ℂ) |
| 35 | mulcl 11112 | . . . . . 6 ⊢ ((;27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (;27 · (𝑄↑2)) ∈ ℂ) | |
| 36 | 32, 34, 35 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (;27 · (𝑄↑2)) ∈ ℂ) |
| 37 | 28, 36 | subcld 11493 | . . . 4 ⊢ (𝜑 → (-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) ∈ ℂ) |
| 38 | 7nn0 12424 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 39 | 38, 13 | decnncl 12629 | . . . . . 6 ⊢ ;72 ∈ ℕ |
| 40 | 39 | nncni 12156 | . . . . 5 ⊢ ;72 ∈ ℂ |
| 41 | 10, 16 | mulcld 11154 | . . . . 5 ⊢ (𝜑 → (𝑃 · 𝑅) ∈ ℂ) |
| 42 | mulcl 11112 | . . . . 5 ⊢ ((;72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (;72 · (𝑃 · 𝑅)) ∈ ℂ) | |
| 43 | 40, 41, 42 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;72 · (𝑃 · 𝑅)) ∈ ℂ) |
| 44 | 37, 43 | addcld 11153 | . . 3 ⊢ (𝜑 → ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅))) ∈ ℂ) |
| 45 | 21, 44 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 46 | quart.w | . . 3 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
| 47 | 45 | sqcld 14069 | . . . . 5 ⊢ (𝜑 → (𝑉↑2) ∈ ℂ) |
| 48 | 4cn 12231 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 49 | expcl 14004 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ) | |
| 50 | 20, 23, 49 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝑈↑3) ∈ ℂ) |
| 51 | mulcl 11112 | . . . . . 6 ⊢ ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ) | |
| 52 | 48, 50, 51 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 · (𝑈↑3)) ∈ ℂ) |
| 53 | 47, 52 | subcld 11493 | . . . 4 ⊢ (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ) |
| 54 | 53 | sqrtcld 15365 | . . 3 ⊢ (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ) |
| 55 | 46, 54 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
| 56 | 20, 45, 55 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 -cneg 11366 / cdiv 11795 2c2 12201 3c3 12202 4c4 12203 5c5 12204 6c6 12205 7c7 12206 8c8 12207 ℕ0cn0 12402 ;cdc 12609 ↑cexp 13986 √csqrt 15158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 |
| This theorem is referenced by: quartlem3 26785 quart 26787 |
| Copyright terms: Public domain | W3C validator |