| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quartlem2 | Structured version Visualization version GIF version | ||
| Description: Closure lemmas for quart 26771. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
| quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
| quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
| quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
| quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
| quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
| quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
| Ref | Expression |
|---|---|
| quartlem2 | ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quart.u | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
| 2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 6 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
| 7 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
| 8 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | quart1cl 26764 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
| 10 | 9 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 11 | 10 | sqcld 14109 | . . . 4 ⊢ (𝜑 → (𝑃↑2) ∈ ℂ) |
| 12 | 1nn0 12458 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 13 | 2nn 12259 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 12, 13 | decnncl 12669 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 15 | 14 | nncni 12196 | . . . . 5 ⊢ ;12 ∈ ℂ |
| 16 | 9 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 17 | mulcl 11152 | . . . . 5 ⊢ ((;12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (;12 · 𝑅) ∈ ℂ) | |
| 18 | 15, 16, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;12 · 𝑅) ∈ ℂ) |
| 19 | 11, 18 | addcld 11193 | . . 3 ⊢ (𝜑 → ((𝑃↑2) + (;12 · 𝑅)) ∈ ℂ) |
| 20 | 1, 19 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 21 | quart.v | . . 3 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
| 22 | 2cn 12261 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 23 | 3nn0 12460 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
| 24 | expcl 14044 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ) | |
| 25 | 10, 23, 24 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝑃↑3) ∈ ℂ) |
| 26 | mulcl 11152 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ) | |
| 27 | 22, 25, 26 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑃↑3)) ∈ ℂ) |
| 28 | 27 | negcld 11520 | . . . . 5 ⊢ (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ) |
| 29 | 2nn0 12459 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 30 | 7nn 12278 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
| 31 | 29, 30 | decnncl 12669 | . . . . . . 7 ⊢ ;27 ∈ ℕ |
| 32 | 31 | nncni 12196 | . . . . . 6 ⊢ ;27 ∈ ℂ |
| 33 | 9 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 34 | 33 | sqcld 14109 | . . . . . 6 ⊢ (𝜑 → (𝑄↑2) ∈ ℂ) |
| 35 | mulcl 11152 | . . . . . 6 ⊢ ((;27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (;27 · (𝑄↑2)) ∈ ℂ) | |
| 36 | 32, 34, 35 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (;27 · (𝑄↑2)) ∈ ℂ) |
| 37 | 28, 36 | subcld 11533 | . . . 4 ⊢ (𝜑 → (-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) ∈ ℂ) |
| 38 | 7nn0 12464 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 39 | 38, 13 | decnncl 12669 | . . . . . 6 ⊢ ;72 ∈ ℕ |
| 40 | 39 | nncni 12196 | . . . . 5 ⊢ ;72 ∈ ℂ |
| 41 | 10, 16 | mulcld 11194 | . . . . 5 ⊢ (𝜑 → (𝑃 · 𝑅) ∈ ℂ) |
| 42 | mulcl 11152 | . . . . 5 ⊢ ((;72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (;72 · (𝑃 · 𝑅)) ∈ ℂ) | |
| 43 | 40, 41, 42 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;72 · (𝑃 · 𝑅)) ∈ ℂ) |
| 44 | 37, 43 | addcld 11193 | . . 3 ⊢ (𝜑 → ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅))) ∈ ℂ) |
| 45 | 21, 44 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 46 | quart.w | . . 3 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
| 47 | 45 | sqcld 14109 | . . . . 5 ⊢ (𝜑 → (𝑉↑2) ∈ ℂ) |
| 48 | 4cn 12271 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 49 | expcl 14044 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ) | |
| 50 | 20, 23, 49 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝑈↑3) ∈ ℂ) |
| 51 | mulcl 11152 | . . . . . 6 ⊢ ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ) | |
| 52 | 48, 50, 51 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 · (𝑈↑3)) ∈ ℂ) |
| 53 | 47, 52 | subcld 11533 | . . . 4 ⊢ (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ) |
| 54 | 53 | sqrtcld 15406 | . . 3 ⊢ (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ) |
| 55 | 46, 54 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
| 56 | 20, 45, 55 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 -cneg 11406 / cdiv 11835 2c2 12241 3c3 12242 4c4 12243 5c5 12244 6c6 12245 7c7 12246 8c8 12247 ℕ0cn0 12442 ;cdc 12649 ↑cexp 14026 √csqrt 15199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: quartlem3 26769 quart 26771 |
| Copyright terms: Public domain | W3C validator |