| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quartlem2 | Structured version Visualization version GIF version | ||
| Description: Closure lemmas for quart 26778. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
| quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
| quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
| quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
| quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
| quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
| quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
| Ref | Expression |
|---|---|
| quartlem2 | ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quart.u | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
| 2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 6 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
| 7 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
| 8 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | quart1cl 26771 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
| 10 | 9 | simp1d 1142 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 11 | 10 | sqcld 14116 | . . . 4 ⊢ (𝜑 → (𝑃↑2) ∈ ℂ) |
| 12 | 1nn0 12465 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 13 | 2nn 12266 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 12, 13 | decnncl 12676 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 15 | 14 | nncni 12203 | . . . . 5 ⊢ ;12 ∈ ℂ |
| 16 | 9 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 17 | mulcl 11159 | . . . . 5 ⊢ ((;12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (;12 · 𝑅) ∈ ℂ) | |
| 18 | 15, 16, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;12 · 𝑅) ∈ ℂ) |
| 19 | 11, 18 | addcld 11200 | . . 3 ⊢ (𝜑 → ((𝑃↑2) + (;12 · 𝑅)) ∈ ℂ) |
| 20 | 1, 19 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 21 | quart.v | . . 3 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
| 22 | 2cn 12268 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 23 | 3nn0 12467 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
| 24 | expcl 14051 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ) | |
| 25 | 10, 23, 24 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝑃↑3) ∈ ℂ) |
| 26 | mulcl 11159 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ) | |
| 27 | 22, 25, 26 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑃↑3)) ∈ ℂ) |
| 28 | 27 | negcld 11527 | . . . . 5 ⊢ (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ) |
| 29 | 2nn0 12466 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 30 | 7nn 12285 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
| 31 | 29, 30 | decnncl 12676 | . . . . . . 7 ⊢ ;27 ∈ ℕ |
| 32 | 31 | nncni 12203 | . . . . . 6 ⊢ ;27 ∈ ℂ |
| 33 | 9 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 34 | 33 | sqcld 14116 | . . . . . 6 ⊢ (𝜑 → (𝑄↑2) ∈ ℂ) |
| 35 | mulcl 11159 | . . . . . 6 ⊢ ((;27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (;27 · (𝑄↑2)) ∈ ℂ) | |
| 36 | 32, 34, 35 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (;27 · (𝑄↑2)) ∈ ℂ) |
| 37 | 28, 36 | subcld 11540 | . . . 4 ⊢ (𝜑 → (-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) ∈ ℂ) |
| 38 | 7nn0 12471 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 39 | 38, 13 | decnncl 12676 | . . . . . 6 ⊢ ;72 ∈ ℕ |
| 40 | 39 | nncni 12203 | . . . . 5 ⊢ ;72 ∈ ℂ |
| 41 | 10, 16 | mulcld 11201 | . . . . 5 ⊢ (𝜑 → (𝑃 · 𝑅) ∈ ℂ) |
| 42 | mulcl 11159 | . . . . 5 ⊢ ((;72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (;72 · (𝑃 · 𝑅)) ∈ ℂ) | |
| 43 | 40, 41, 42 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;72 · (𝑃 · 𝑅)) ∈ ℂ) |
| 44 | 37, 43 | addcld 11200 | . . 3 ⊢ (𝜑 → ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅))) ∈ ℂ) |
| 45 | 21, 44 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 46 | quart.w | . . 3 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
| 47 | 45 | sqcld 14116 | . . . . 5 ⊢ (𝜑 → (𝑉↑2) ∈ ℂ) |
| 48 | 4cn 12278 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 49 | expcl 14051 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ) | |
| 50 | 20, 23, 49 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝑈↑3) ∈ ℂ) |
| 51 | mulcl 11159 | . . . . . 6 ⊢ ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ) | |
| 52 | 48, 50, 51 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 · (𝑈↑3)) ∈ ℂ) |
| 53 | 47, 52 | subcld 11540 | . . . 4 ⊢ (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ) |
| 54 | 53 | sqrtcld 15413 | . . 3 ⊢ (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ) |
| 55 | 46, 54 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
| 56 | 20, 45, 55 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 3c3 12249 4c4 12250 5c5 12251 6c6 12252 7c7 12253 8c8 12254 ℕ0cn0 12449 ;cdc 12656 ↑cexp 14033 √csqrt 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: quartlem3 26776 quart 26778 |
| Copyright terms: Public domain | W3C validator |