Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quartlem2 | Structured version Visualization version GIF version |
Description: Closure lemmas for quart 26009. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
Ref | Expression |
---|---|
quartlem2 | ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quart.u | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
6 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
7 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
8 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
9 | 2, 3, 4, 5, 6, 7, 8 | quart1cl 26002 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
10 | 9 | simp1d 1141 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
11 | 10 | sqcld 13860 | . . . 4 ⊢ (𝜑 → (𝑃↑2) ∈ ℂ) |
12 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
13 | 2nn 12046 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | 12, 13 | decnncl 12456 | . . . . . 6 ⊢ ;12 ∈ ℕ |
15 | 14 | nncni 11983 | . . . . 5 ⊢ ;12 ∈ ℂ |
16 | 9 | simp3d 1143 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
17 | mulcl 10956 | . . . . 5 ⊢ ((;12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (;12 · 𝑅) ∈ ℂ) | |
18 | 15, 16, 17 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;12 · 𝑅) ∈ ℂ) |
19 | 11, 18 | addcld 10995 | . . 3 ⊢ (𝜑 → ((𝑃↑2) + (;12 · 𝑅)) ∈ ℂ) |
20 | 1, 19 | eqeltrd 2841 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
21 | quart.v | . . 3 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
22 | 2cn 12048 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
23 | 3nn0 12251 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
24 | expcl 13798 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ) | |
25 | 10, 23, 24 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝑃↑3) ∈ ℂ) |
26 | mulcl 10956 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ) | |
27 | 22, 25, 26 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑃↑3)) ∈ ℂ) |
28 | 27 | negcld 11319 | . . . . 5 ⊢ (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ) |
29 | 2nn0 12250 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
30 | 7nn 12065 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
31 | 29, 30 | decnncl 12456 | . . . . . . 7 ⊢ ;27 ∈ ℕ |
32 | 31 | nncni 11983 | . . . . . 6 ⊢ ;27 ∈ ℂ |
33 | 9 | simp2d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
34 | 33 | sqcld 13860 | . . . . . 6 ⊢ (𝜑 → (𝑄↑2) ∈ ℂ) |
35 | mulcl 10956 | . . . . . 6 ⊢ ((;27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (;27 · (𝑄↑2)) ∈ ℂ) | |
36 | 32, 34, 35 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (;27 · (𝑄↑2)) ∈ ℂ) |
37 | 28, 36 | subcld 11332 | . . . 4 ⊢ (𝜑 → (-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) ∈ ℂ) |
38 | 7nn0 12255 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
39 | 38, 13 | decnncl 12456 | . . . . . 6 ⊢ ;72 ∈ ℕ |
40 | 39 | nncni 11983 | . . . . 5 ⊢ ;72 ∈ ℂ |
41 | 10, 16 | mulcld 10996 | . . . . 5 ⊢ (𝜑 → (𝑃 · 𝑅) ∈ ℂ) |
42 | mulcl 10956 | . . . . 5 ⊢ ((;72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (;72 · (𝑃 · 𝑅)) ∈ ℂ) | |
43 | 40, 41, 42 | sylancr 587 | . . . 4 ⊢ (𝜑 → (;72 · (𝑃 · 𝑅)) ∈ ℂ) |
44 | 37, 43 | addcld 10995 | . . 3 ⊢ (𝜑 → ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅))) ∈ ℂ) |
45 | 21, 44 | eqeltrd 2841 | . 2 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
46 | quart.w | . . 3 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
47 | 45 | sqcld 13860 | . . . . 5 ⊢ (𝜑 → (𝑉↑2) ∈ ℂ) |
48 | 4cn 12058 | . . . . . 6 ⊢ 4 ∈ ℂ | |
49 | expcl 13798 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ) | |
50 | 20, 23, 49 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝑈↑3) ∈ ℂ) |
51 | mulcl 10956 | . . . . . 6 ⊢ ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ) | |
52 | 48, 50, 51 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (4 · (𝑈↑3)) ∈ ℂ) |
53 | 47, 52 | subcld 11332 | . . . 4 ⊢ (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ) |
54 | 53 | sqrtcld 15147 | . . 3 ⊢ (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ) |
55 | 46, 54 | eqeltrd 2841 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
56 | 20, 45, 55 | 3jca 1127 | 1 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 1c1 10873 + caddc 10875 · cmul 10877 − cmin 11205 -cneg 11206 / cdiv 11632 2c2 12028 3c3 12029 4c4 12030 5c5 12031 6c6 12032 7c7 12033 8c8 12034 ℕ0cn0 12233 ;cdc 12436 ↑cexp 13780 √csqrt 14942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-rp 12730 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 |
This theorem is referenced by: quartlem3 26007 quart 26009 |
Copyright terms: Public domain | W3C validator |