MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem2 Structured version   Visualization version   GIF version

Theorem quartlem2 26008
Description: Closure lemmas for quart 26011. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
Assertion
Ref Expression
quartlem2 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))

Proof of Theorem quartlem2
StepHypRef Expression
1 quart.u . . 3 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
2 quart.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 quart.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 quart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 quart.d . . . . . . 7 (𝜑𝐷 ∈ ℂ)
6 quart.p . . . . . . 7 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
7 quart.q . . . . . . 7 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
8 quart.r . . . . . . 7 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
92, 3, 4, 5, 6, 7, 8quart1cl 26004 . . . . . 6 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
109simp1d 1141 . . . . 5 (𝜑𝑃 ∈ ℂ)
1110sqcld 13862 . . . 4 (𝜑 → (𝑃↑2) ∈ ℂ)
12 1nn0 12249 . . . . . . 7 1 ∈ ℕ0
13 2nn 12046 . . . . . . 7 2 ∈ ℕ
1412, 13decnncl 12457 . . . . . 6 12 ∈ ℕ
1514nncni 11983 . . . . 5 12 ∈ ℂ
169simp3d 1143 . . . . 5 (𝜑𝑅 ∈ ℂ)
17 mulcl 10955 . . . . 5 ((12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (12 · 𝑅) ∈ ℂ)
1815, 16, 17sylancr 587 . . . 4 (𝜑 → (12 · 𝑅) ∈ ℂ)
1911, 18addcld 10994 . . 3 (𝜑 → ((𝑃↑2) + (12 · 𝑅)) ∈ ℂ)
201, 19eqeltrd 2839 . 2 (𝜑𝑈 ∈ ℂ)
21 quart.v . . 3 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
22 2cn 12048 . . . . . . 7 2 ∈ ℂ
23 3nn0 12251 . . . . . . . 8 3 ∈ ℕ0
24 expcl 13800 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ)
2510, 23, 24sylancl 586 . . . . . . 7 (𝜑 → (𝑃↑3) ∈ ℂ)
26 mulcl 10955 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ)
2722, 25, 26sylancr 587 . . . . . 6 (𝜑 → (2 · (𝑃↑3)) ∈ ℂ)
2827negcld 11319 . . . . 5 (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ)
29 2nn0 12250 . . . . . . . 8 2 ∈ ℕ0
30 7nn 12065 . . . . . . . 8 7 ∈ ℕ
3129, 30decnncl 12457 . . . . . . 7 27 ∈ ℕ
3231nncni 11983 . . . . . 6 27 ∈ ℂ
339simp2d 1142 . . . . . . 7 (𝜑𝑄 ∈ ℂ)
3433sqcld 13862 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
35 mulcl 10955 . . . . . 6 ((27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (27 · (𝑄↑2)) ∈ ℂ)
3632, 34, 35sylancr 587 . . . . 5 (𝜑 → (27 · (𝑄↑2)) ∈ ℂ)
3728, 36subcld 11332 . . . 4 (𝜑 → (-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) ∈ ℂ)
38 7nn0 12255 . . . . . . 7 7 ∈ ℕ0
3938, 13decnncl 12457 . . . . . 6 72 ∈ ℕ
4039nncni 11983 . . . . 5 72 ∈ ℂ
4110, 16mulcld 10995 . . . . 5 (𝜑 → (𝑃 · 𝑅) ∈ ℂ)
42 mulcl 10955 . . . . 5 ((72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4340, 41, 42sylancr 587 . . . 4 (𝜑 → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4437, 43addcld 10994 . . 3 (𝜑 → ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))) ∈ ℂ)
4521, 44eqeltrd 2839 . 2 (𝜑𝑉 ∈ ℂ)
46 quart.w . . 3 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
4745sqcld 13862 . . . . 5 (𝜑 → (𝑉↑2) ∈ ℂ)
48 4cn 12058 . . . . . 6 4 ∈ ℂ
49 expcl 13800 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
5020, 23, 49sylancl 586 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℂ)
51 mulcl 10955 . . . . . 6 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
5248, 50, 51sylancr 587 . . . . 5 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
5347, 52subcld 11332 . . . 4 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
5453sqrtcld 15149 . . 3 (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ)
5546, 54eqeltrd 2839 . 2 (𝜑𝑊 ∈ ℂ)
5620, 45, 553jca 1127 1 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  3c3 12029  4c4 12030  5c5 12031  6c6 12032  7c7 12033  8c8 12034  0cn0 12233  cdc 12437  cexp 13782  csqrt 14944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  quartlem3  26009  quart  26011
  Copyright terms: Public domain W3C validator