MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem2 Structured version   Visualization version   GIF version

Theorem quartlem2 25713
Description: Closure lemmas for quart 25716. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
Assertion
Ref Expression
quartlem2 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))

Proof of Theorem quartlem2
StepHypRef Expression
1 quart.u . . 3 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
2 quart.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 quart.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 quart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 quart.d . . . . . . 7 (𝜑𝐷 ∈ ℂ)
6 quart.p . . . . . . 7 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
7 quart.q . . . . . . 7 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
8 quart.r . . . . . . 7 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
92, 3, 4, 5, 6, 7, 8quart1cl 25709 . . . . . 6 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
109simp1d 1144 . . . . 5 (𝜑𝑃 ∈ ℂ)
1110sqcld 13697 . . . 4 (𝜑 → (𝑃↑2) ∈ ℂ)
12 1nn0 12089 . . . . . . 7 1 ∈ ℕ0
13 2nn 11886 . . . . . . 7 2 ∈ ℕ
1412, 13decnncl 12296 . . . . . 6 12 ∈ ℕ
1514nncni 11823 . . . . 5 12 ∈ ℂ
169simp3d 1146 . . . . 5 (𝜑𝑅 ∈ ℂ)
17 mulcl 10796 . . . . 5 ((12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (12 · 𝑅) ∈ ℂ)
1815, 16, 17sylancr 590 . . . 4 (𝜑 → (12 · 𝑅) ∈ ℂ)
1911, 18addcld 10835 . . 3 (𝜑 → ((𝑃↑2) + (12 · 𝑅)) ∈ ℂ)
201, 19eqeltrd 2834 . 2 (𝜑𝑈 ∈ ℂ)
21 quart.v . . 3 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
22 2cn 11888 . . . . . . 7 2 ∈ ℂ
23 3nn0 12091 . . . . . . . 8 3 ∈ ℕ0
24 expcl 13636 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ)
2510, 23, 24sylancl 589 . . . . . . 7 (𝜑 → (𝑃↑3) ∈ ℂ)
26 mulcl 10796 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ)
2722, 25, 26sylancr 590 . . . . . 6 (𝜑 → (2 · (𝑃↑3)) ∈ ℂ)
2827negcld 11159 . . . . 5 (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ)
29 2nn0 12090 . . . . . . . 8 2 ∈ ℕ0
30 7nn 11905 . . . . . . . 8 7 ∈ ℕ
3129, 30decnncl 12296 . . . . . . 7 27 ∈ ℕ
3231nncni 11823 . . . . . 6 27 ∈ ℂ
339simp2d 1145 . . . . . . 7 (𝜑𝑄 ∈ ℂ)
3433sqcld 13697 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
35 mulcl 10796 . . . . . 6 ((27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (27 · (𝑄↑2)) ∈ ℂ)
3632, 34, 35sylancr 590 . . . . 5 (𝜑 → (27 · (𝑄↑2)) ∈ ℂ)
3728, 36subcld 11172 . . . 4 (𝜑 → (-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) ∈ ℂ)
38 7nn0 12095 . . . . . . 7 7 ∈ ℕ0
3938, 13decnncl 12296 . . . . . 6 72 ∈ ℕ
4039nncni 11823 . . . . 5 72 ∈ ℂ
4110, 16mulcld 10836 . . . . 5 (𝜑 → (𝑃 · 𝑅) ∈ ℂ)
42 mulcl 10796 . . . . 5 ((72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4340, 41, 42sylancr 590 . . . 4 (𝜑 → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4437, 43addcld 10835 . . 3 (𝜑 → ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))) ∈ ℂ)
4521, 44eqeltrd 2834 . 2 (𝜑𝑉 ∈ ℂ)
46 quart.w . . 3 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
4745sqcld 13697 . . . . 5 (𝜑 → (𝑉↑2) ∈ ℂ)
48 4cn 11898 . . . . . 6 4 ∈ ℂ
49 expcl 13636 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
5020, 23, 49sylancl 589 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℂ)
51 mulcl 10796 . . . . . 6 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
5248, 50, 51sylancr 590 . . . . 5 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
5347, 52subcld 11172 . . . 4 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
5453sqrtcld 14984 . . 3 (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ)
5546, 54eqeltrd 2834 . 2 (𝜑𝑊 ∈ ℂ)
5620, 45, 553jca 1130 1 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  cfv 6369  (class class class)co 7202  cc 10710  1c1 10713   + caddc 10715   · cmul 10717  cmin 11045  -cneg 11046   / cdiv 11472  2c2 11868  3c3 11869  4c4 11870  5c5 11871  6c6 11872  7c7 11873  8c8 11874  0cn0 12073  cdc 12276  cexp 13618  csqrt 14779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-rp 12570  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782
This theorem is referenced by:  quartlem3  25714  quart  25716
  Copyright terms: Public domain W3C validator