MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem2 Structured version   Visualization version   GIF version

Theorem quartlem2 25448
Description: Closure lemmas for quart 25451. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
Assertion
Ref Expression
quartlem2 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))

Proof of Theorem quartlem2
StepHypRef Expression
1 quart.u . . 3 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
2 quart.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 quart.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 quart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 quart.d . . . . . . 7 (𝜑𝐷 ∈ ℂ)
6 quart.p . . . . . . 7 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
7 quart.q . . . . . . 7 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
8 quart.r . . . . . . 7 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
92, 3, 4, 5, 6, 7, 8quart1cl 25444 . . . . . 6 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
109simp1d 1139 . . . . 5 (𝜑𝑃 ∈ ℂ)
1110sqcld 13508 . . . 4 (𝜑 → (𝑃↑2) ∈ ℂ)
12 1nn0 11905 . . . . . . 7 1 ∈ ℕ0
13 2nn 11702 . . . . . . 7 2 ∈ ℕ
1412, 13decnncl 12110 . . . . . 6 12 ∈ ℕ
1514nncni 11639 . . . . 5 12 ∈ ℂ
169simp3d 1141 . . . . 5 (𝜑𝑅 ∈ ℂ)
17 mulcl 10614 . . . . 5 ((12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (12 · 𝑅) ∈ ℂ)
1815, 16, 17sylancr 590 . . . 4 (𝜑 → (12 · 𝑅) ∈ ℂ)
1911, 18addcld 10653 . . 3 (𝜑 → ((𝑃↑2) + (12 · 𝑅)) ∈ ℂ)
201, 19eqeltrd 2893 . 2 (𝜑𝑈 ∈ ℂ)
21 quart.v . . 3 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
22 2cn 11704 . . . . . . 7 2 ∈ ℂ
23 3nn0 11907 . . . . . . . 8 3 ∈ ℕ0
24 expcl 13447 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ)
2510, 23, 24sylancl 589 . . . . . . 7 (𝜑 → (𝑃↑3) ∈ ℂ)
26 mulcl 10614 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ)
2722, 25, 26sylancr 590 . . . . . 6 (𝜑 → (2 · (𝑃↑3)) ∈ ℂ)
2827negcld 10977 . . . . 5 (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ)
29 2nn0 11906 . . . . . . . 8 2 ∈ ℕ0
30 7nn 11721 . . . . . . . 8 7 ∈ ℕ
3129, 30decnncl 12110 . . . . . . 7 27 ∈ ℕ
3231nncni 11639 . . . . . 6 27 ∈ ℂ
339simp2d 1140 . . . . . . 7 (𝜑𝑄 ∈ ℂ)
3433sqcld 13508 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
35 mulcl 10614 . . . . . 6 ((27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (27 · (𝑄↑2)) ∈ ℂ)
3632, 34, 35sylancr 590 . . . . 5 (𝜑 → (27 · (𝑄↑2)) ∈ ℂ)
3728, 36subcld 10990 . . . 4 (𝜑 → (-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) ∈ ℂ)
38 7nn0 11911 . . . . . . 7 7 ∈ ℕ0
3938, 13decnncl 12110 . . . . . 6 72 ∈ ℕ
4039nncni 11639 . . . . 5 72 ∈ ℂ
4110, 16mulcld 10654 . . . . 5 (𝜑 → (𝑃 · 𝑅) ∈ ℂ)
42 mulcl 10614 . . . . 5 ((72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4340, 41, 42sylancr 590 . . . 4 (𝜑 → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4437, 43addcld 10653 . . 3 (𝜑 → ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))) ∈ ℂ)
4521, 44eqeltrd 2893 . 2 (𝜑𝑉 ∈ ℂ)
46 quart.w . . 3 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
4745sqcld 13508 . . . . 5 (𝜑 → (𝑉↑2) ∈ ℂ)
48 4cn 11714 . . . . . 6 4 ∈ ℂ
49 expcl 13447 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
5020, 23, 49sylancl 589 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℂ)
51 mulcl 10614 . . . . . 6 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
5248, 50, 51sylancr 590 . . . . 5 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
5347, 52subcld 10990 . . . 4 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
5453sqrtcld 14793 . . 3 (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ)
5546, 54eqeltrd 2893 . 2 (𝜑𝑊 ∈ ℂ)
5620, 45, 553jca 1125 1 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  cc 10528  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863  -cneg 10864   / cdiv 11290  2c2 11684  3c3 11685  4c4 11686  5c5 11687  6c6 11688  7c7 11689  8c8 11690  0cn0 11889  cdc 12090  cexp 13429  csqrt 14588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591
This theorem is referenced by:  quartlem3  25449  quart  25451
  Copyright terms: Public domain W3C validator