MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem2 Structured version   Visualization version   GIF version

Theorem quartlem2 26796
Description: Closure lemmas for quart 26799. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
Assertion
Ref Expression
quartlem2 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))

Proof of Theorem quartlem2
StepHypRef Expression
1 quart.u . . 3 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
2 quart.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 quart.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 quart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 quart.d . . . . . . 7 (𝜑𝐷 ∈ ℂ)
6 quart.p . . . . . . 7 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
7 quart.q . . . . . . 7 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
8 quart.r . . . . . . 7 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
92, 3, 4, 5, 6, 7, 8quart1cl 26792 . . . . . 6 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
109simp1d 1142 . . . . 5 (𝜑𝑃 ∈ ℂ)
1110sqcld 14053 . . . 4 (𝜑 → (𝑃↑2) ∈ ℂ)
12 1nn0 12404 . . . . . . 7 1 ∈ ℕ0
13 2nn 12205 . . . . . . 7 2 ∈ ℕ
1412, 13decnncl 12614 . . . . . 6 12 ∈ ℕ
1514nncni 12142 . . . . 5 12 ∈ ℂ
169simp3d 1144 . . . . 5 (𝜑𝑅 ∈ ℂ)
17 mulcl 11097 . . . . 5 ((12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (12 · 𝑅) ∈ ℂ)
1815, 16, 17sylancr 587 . . . 4 (𝜑 → (12 · 𝑅) ∈ ℂ)
1911, 18addcld 11138 . . 3 (𝜑 → ((𝑃↑2) + (12 · 𝑅)) ∈ ℂ)
201, 19eqeltrd 2833 . 2 (𝜑𝑈 ∈ ℂ)
21 quart.v . . 3 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
22 2cn 12207 . . . . . . 7 2 ∈ ℂ
23 3nn0 12406 . . . . . . . 8 3 ∈ ℕ0
24 expcl 13988 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ)
2510, 23, 24sylancl 586 . . . . . . 7 (𝜑 → (𝑃↑3) ∈ ℂ)
26 mulcl 11097 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ)
2722, 25, 26sylancr 587 . . . . . 6 (𝜑 → (2 · (𝑃↑3)) ∈ ℂ)
2827negcld 11466 . . . . 5 (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ)
29 2nn0 12405 . . . . . . . 8 2 ∈ ℕ0
30 7nn 12224 . . . . . . . 8 7 ∈ ℕ
3129, 30decnncl 12614 . . . . . . 7 27 ∈ ℕ
3231nncni 12142 . . . . . 6 27 ∈ ℂ
339simp2d 1143 . . . . . . 7 (𝜑𝑄 ∈ ℂ)
3433sqcld 14053 . . . . . 6 (𝜑 → (𝑄↑2) ∈ ℂ)
35 mulcl 11097 . . . . . 6 ((27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (27 · (𝑄↑2)) ∈ ℂ)
3632, 34, 35sylancr 587 . . . . 5 (𝜑 → (27 · (𝑄↑2)) ∈ ℂ)
3728, 36subcld 11479 . . . 4 (𝜑 → (-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) ∈ ℂ)
38 7nn0 12410 . . . . . . 7 7 ∈ ℕ0
3938, 13decnncl 12614 . . . . . 6 72 ∈ ℕ
4039nncni 12142 . . . . 5 72 ∈ ℂ
4110, 16mulcld 11139 . . . . 5 (𝜑 → (𝑃 · 𝑅) ∈ ℂ)
42 mulcl 11097 . . . . 5 ((72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4340, 41, 42sylancr 587 . . . 4 (𝜑 → (72 · (𝑃 · 𝑅)) ∈ ℂ)
4437, 43addcld 11138 . . 3 (𝜑 → ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))) ∈ ℂ)
4521, 44eqeltrd 2833 . 2 (𝜑𝑉 ∈ ℂ)
46 quart.w . . 3 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
4745sqcld 14053 . . . . 5 (𝜑 → (𝑉↑2) ∈ ℂ)
48 4cn 12217 . . . . . 6 4 ∈ ℂ
49 expcl 13988 . . . . . . 7 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
5020, 23, 49sylancl 586 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℂ)
51 mulcl 11097 . . . . . 6 ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ)
5248, 50, 51sylancr 587 . . . . 5 (𝜑 → (4 · (𝑈↑3)) ∈ ℂ)
5347, 52subcld 11479 . . . 4 (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ)
5453sqrtcld 15349 . . 3 (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ)
5546, 54eqeltrd 2833 . 2 (𝜑𝑊 ∈ ℂ)
5620, 45, 553jca 1128 1 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  cc 11011  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351  -cneg 11352   / cdiv 11781  2c2 12187  3c3 12188  4c4 12189  5c5 12190  6c6 12191  7c7 12192  8c8 12193  0cn0 12388  cdc 12594  cexp 13970  csqrt 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145
This theorem is referenced by:  quartlem3  26797  quart  26799
  Copyright terms: Public domain W3C validator