Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm7un | Structured version Visualization version GIF version |
Description: Least common multiple of natural numbers up to 7 equals 420. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcm7un | ⊢ (lcm‘(1...7)) = ;;420 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 11922 | . . 3 ⊢ 7 ∈ ℕ | |
2 | id 22 | . . . 4 ⊢ (7 ∈ ℕ → 7 ∈ ℕ) | |
3 | 2 | lcmfunnnd 39754 | . . 3 ⊢ (7 ∈ ℕ → (lcm‘(1...7)) = ((lcm‘(1...(7 − 1))) lcm 7)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lcm‘(1...7)) = ((lcm‘(1...(7 − 1))) lcm 7) |
5 | 7m1e6 11962 | . . . . . 6 ⊢ (7 − 1) = 6 | |
6 | 5 | oveq2i 7224 | . . . . 5 ⊢ (1...(7 − 1)) = (1...6) |
7 | 6 | fveq2i 6720 | . . . 4 ⊢ (lcm‘(1...(7 − 1))) = (lcm‘(1...6)) |
8 | 7 | oveq1i 7223 | . . 3 ⊢ ((lcm‘(1...(7 − 1))) lcm 7) = ((lcm‘(1...6)) lcm 7) |
9 | lcm6un 39760 | . . . 4 ⊢ (lcm‘(1...6)) = ;60 | |
10 | 9 | oveq1i 7223 | . . 3 ⊢ ((lcm‘(1...6)) lcm 7) = (;60 lcm 7) |
11 | 8, 10 | eqtri 2765 | . 2 ⊢ ((lcm‘(1...(7 − 1))) lcm 7) = (;60 lcm 7) |
12 | 60lcm7e420 39752 | . 2 ⊢ (;60 lcm 7) = ;;420 | |
13 | 4, 11, 12 | 3eqtri 2769 | 1 ⊢ (lcm‘(1...7)) = ;;420 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 0cc0 10729 1c1 10730 − cmin 11062 ℕcn 11830 2c2 11885 4c4 11887 6c6 11889 7c7 11890 ;cdc 12293 ...cfz 13095 lcm clcm 16145 lcmclcmf 16146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-prod 15468 df-dvds 15816 df-gcd 16054 df-lcm 16147 df-lcmf 16148 df-prm 16229 |
This theorem is referenced by: lcm8un 39762 lcmineqlem 39794 |
Copyright terms: Public domain | W3C validator |