Proof of Theorem cramerimplem1
Step | Hyp | Ref
| Expression |
1 | | crngring 19806 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | 1 | anim2i 617 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
3 | 2 | ancomd 462 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
4 | 3 | 3adant3 1131 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin)) |
5 | | simp3 1137 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
6 | 5 | anim1i 615 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) |
7 | | cramerimplem1.v |
. . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
8 | | cramerimplem1.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
9 | 8 | fveq2i 6774 |
. . . . . 6
⊢
(1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
10 | | cramerimplem1.e |
. . . . . 6
⊢ 𝐸 = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) |
11 | 7, 9, 10 | 1marepvmarrepid 21735 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼) = 𝐸) |
12 | 4, 6, 11 | syl2an2r 682 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼) = 𝐸) |
13 | 12 | eqcomd 2746 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → 𝐸 = (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼)) |
14 | 13 | fveq2d 6775 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘𝐸) = (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼))) |
15 | | cramerimplem1.d |
. . . . 5
⊢ 𝐷 = (𝑁 maDet 𝑅) |
16 | 15 | a1i 11 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → 𝐷 = (𝑁 maDet 𝑅)) |
17 | 16 | fveq1d 6773 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼)) = ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼))) |
18 | | simpl2 1191 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → 𝑅 ∈ CRing) |
19 | 5 | anim1ci 616 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) |
20 | 8 | eqcomi 2749 |
. . . . . . . 8
⊢ (𝑁 Mat 𝑅) = 𝐴 |
21 | 20 | fveq2i 6774 |
. . . . . . 7
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘𝐴) |
22 | | eqid 2740 |
. . . . . . 7
⊢
(1r‘𝐴) = (1r‘𝐴) |
23 | 8, 21, 7, 22 | ma1repvcl 21730 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) → (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅))) |
24 | 4, 19, 23 | syl2an2r 682 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅))) |
25 | 10, 24 | eqeltrid 2845 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → 𝐸 ∈ (Base‘(𝑁 Mat 𝑅))) |
26 | 5 | adantr 481 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → 𝐼 ∈ 𝑁) |
27 | | elmapi 8629 |
. . . . . . . . 9
⊢ (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅)) |
28 | | ffvelrn 6956 |
. . . . . . . . . 10
⊢ ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼 ∈ 𝑁) → (𝑍‘𝐼) ∈ (Base‘𝑅)) |
29 | 28 | ex 413 |
. . . . . . . . 9
⊢ (𝑍:𝑁⟶(Base‘𝑅) → (𝐼 ∈ 𝑁 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
30 | 27, 29 | syl 17 |
. . . . . . . 8
⊢ (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼 ∈ 𝑁 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
31 | 30, 7 | eleq2s 2859 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → (𝐼 ∈ 𝑁 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
32 | 31 | com12 32 |
. . . . . 6
⊢ (𝐼 ∈ 𝑁 → (𝑍 ∈ 𝑉 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
33 | 32 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → (𝑍 ∈ 𝑉 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
34 | 33 | imp 407 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝑍‘𝐼) ∈ (Base‘𝑅)) |
35 | | smadiadetr 21835 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐸 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐼 ∈ 𝑁 ∧ (𝑍‘𝐼) ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼)) = ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼)))) |
36 | 18, 25, 26, 34, 35 | syl22anc 836 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼)) = ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼)))) |
37 | 17, 36 | eqtrd 2780 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼)) = ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼)))) |
38 | 7, 9, 10 | 1marepvsma1 21743 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) |
39 | 4, 6, 38 | syl2an2r 682 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) |
40 | 39 | fveq2d 6775 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼)) = (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))) |
41 | 40 | oveq2d 7288 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))) = ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))))) |
42 | | diffi 8953 |
. . . . . . . 8
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) |
43 | 42 | anim1ci 616 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin)) |
44 | 43 | 3adant3 1131 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin)) |
45 | 44 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin)) |
46 | | eqid 2740 |
. . . . . 6
⊢ ((𝑁 ∖ {𝐼}) maDet 𝑅) = ((𝑁 ∖ {𝐼}) maDet 𝑅) |
47 | | eqid 2740 |
. . . . . 6
⊢ ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅) |
48 | | eqid 2740 |
. . . . . 6
⊢
(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) |
49 | | eqid 2740 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
50 | 46, 47, 48, 49 | mdet1 21761 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) = (1r‘𝑅)) |
51 | 45, 50 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) = (1r‘𝑅)) |
52 | 51 | oveq2d 7288 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))) = ((𝑍‘𝐼)(.r‘𝑅)(1r‘𝑅))) |
53 | 1 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ Ring) |
54 | | eqid 2740 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
55 | | eqid 2740 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
56 | 54, 55, 49 | ringridm 19822 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑍‘𝐼) ∈ (Base‘𝑅)) → ((𝑍‘𝐼)(.r‘𝑅)(1r‘𝑅)) = (𝑍‘𝐼)) |
57 | 53, 34, 56 | syl2an2r 682 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → ((𝑍‘𝐼)(.r‘𝑅)(1r‘𝑅)) = (𝑍‘𝐼)) |
58 | 41, 52, 57 | 3eqtrd 2784 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → ((𝑍‘𝐼)(.r‘𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))) = (𝑍‘𝐼)) |
59 | 14, 37, 58 | 3eqtrd 2784 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑁) ∧ 𝑍 ∈ 𝑉) → (𝐷‘𝐸) = (𝑍‘𝐼)) |