MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem1 Structured version   Visualization version   GIF version

Theorem cramerimplem1 21288
Description: Lemma 1 for cramerimp 21291: The determinant of the identity matrix with the ith column replaced by a (column) vector equals the ith component of the vector. (Contributed by AV, 15-Feb-2019.) (Revised by AV, 5-Jul-2022.)
Hypotheses
Ref Expression
cramerimplem1.a 𝐴 = (𝑁 Mat 𝑅)
cramerimplem1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimplem1.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimplem1.d 𝐷 = (𝑁 maDet 𝑅)
Assertion
Ref Expression
cramerimplem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))

Proof of Theorem cramerimplem1
StepHypRef Expression
1 crngring 19302 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21anim2i 619 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
32ancomd 465 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
433adant3 1129 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
5 simp3 1135 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
65anim1i 617 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐼𝑁𝑍𝑉))
7 cramerimplem1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
8 cramerimplem1.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
98fveq2i 6648 . . . . . 6 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
10 cramerimplem1.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
117, 9, 101marepvmarrepid 21180 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝐸)
124, 6, 11syl2an2r 684 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝐸)
1312eqcomd 2804 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐸 = (𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼))
1413fveq2d 6649 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)))
15 cramerimplem1.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
1615a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐷 = (𝑁 maDet 𝑅))
1716fveq1d 6647 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)))
18 simpl2 1189 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝑅 ∈ CRing)
195anim1ci 618 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑍𝑉𝐼𝑁))
208eqcomi 2807 . . . . . . . 8 (𝑁 Mat 𝑅) = 𝐴
2120fveq2i 6648 . . . . . . 7 (Base‘(𝑁 Mat 𝑅)) = (Base‘𝐴)
22 eqid 2798 . . . . . . 7 (1r𝐴) = (1r𝐴)
238, 21, 7, 22ma1repvcl 21175 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
244, 19, 23syl2an2r 684 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
2510, 24eqeltrid 2894 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐸 ∈ (Base‘(𝑁 Mat 𝑅)))
265adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → 𝐼𝑁)
27 elmapi 8411 . . . . . . . . 9 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅))
28 ffvelrn 6826 . . . . . . . . . 10 ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼𝑁) → (𝑍𝐼) ∈ (Base‘𝑅))
2928ex 416 . . . . . . . . 9 (𝑍:𝑁⟶(Base‘𝑅) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
3027, 29syl 17 . . . . . . . 8 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
3130, 7eleq2s 2908 . . . . . . 7 (𝑍𝑉 → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
3231com12 32 . . . . . 6 (𝐼𝑁 → (𝑍𝑉 → (𝑍𝐼) ∈ (Base‘𝑅)))
33323ad2ant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑍𝑉 → (𝑍𝐼) ∈ (Base‘𝑅)))
3433imp 410 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑍𝐼) ∈ (Base‘𝑅))
35 smadiadetr 21280 . . . 4 (((𝑅 ∈ CRing ∧ 𝐸 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐼𝑁 ∧ (𝑍𝐼) ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))))
3618, 25, 26, 34, 35syl22anc 837 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑁 maDet 𝑅)‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))))
3717, 36eqtrd 2833 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷‘(𝐼(𝐸(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼)) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))))
387, 9, 101marepvsma1 21188 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
394, 6, 38syl2an2r 684 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))
4039fveq2d 6649 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼)) = (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))))
4140oveq2d 7151 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))) = ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))))
42 diffi 8734 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
4342anim1ci 618 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
44433adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
4544adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin))
46 eqid 2798 . . . . . 6 ((𝑁 ∖ {𝐼}) maDet 𝑅) = ((𝑁 ∖ {𝐼}) maDet 𝑅)
47 eqid 2798 . . . . . 6 ((𝑁 ∖ {𝐼}) Mat 𝑅) = ((𝑁 ∖ {𝐼}) Mat 𝑅)
48 eqid 2798 . . . . . 6 (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)) = (1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))
49 eqid 2798 . . . . . 6 (1r𝑅) = (1r𝑅)
5046, 47, 48, 49mdet1 21206 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 ∖ {𝐼}) ∈ Fin) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) = (1r𝑅))
5145, 50syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅))) = (1r𝑅))
5251oveq2d 7151 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(1r‘((𝑁 ∖ {𝐼}) Mat 𝑅)))) = ((𝑍𝐼)(.r𝑅)(1r𝑅)))
5313ad2ant2 1131 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
54 eqid 2798 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
55 eqid 2798 . . . . 5 (.r𝑅) = (.r𝑅)
5654, 55, 49ringridm 19318 . . . 4 ((𝑅 ∈ Ring ∧ (𝑍𝐼) ∈ (Base‘𝑅)) → ((𝑍𝐼)(.r𝑅)(1r𝑅)) = (𝑍𝐼))
5753, 34, 56syl2an2r 684 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(1r𝑅)) = (𝑍𝐼))
5841, 52, 573eqtrd 2837 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → ((𝑍𝐼)(.r𝑅)(((𝑁 ∖ {𝐼}) maDet 𝑅)‘(𝐼((𝑁 subMat 𝑅)‘𝐸)𝐼))) = (𝑍𝐼))
5914, 37, 583eqtrd 2837 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cdif 3878  {csn 4525  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  Basecbs 16475  .rcmulr 16558  1rcur 19244  Ringcrg 19290  CRingccrg 19291   Mat cmat 21012   matRRep cmarrep 21161   matRepV cmatrepV 21162   subMat csubma 21181   maDet cmdat 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-dsmm 20421  df-frlm 20436  df-mamu 20991  df-mat 21013  df-marrep 21163  df-marepv 21164  df-subma 21182  df-mdet 21190  df-minmar1 21240
This theorem is referenced by:  cramerimp  21291
  Copyright terms: Public domain W3C validator