Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt Structured version   Visualization version   GIF version

Theorem flsqrt 47574
Description: A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))

Proof of Theorem flsqrt
StepHypRef Expression
1 resqrtcl 15277 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
2 nn0z 12618 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
3 flbi 13838 . . 3 (((√‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
41, 2, 3syl2an 596 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
5 nn0re 12515 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
6 nn0ge0 12531 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
75, 6jca 511 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8 sqrtsq 15293 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (√‘(𝐵↑2)) = 𝐵)
98eqcomd 2742 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 = (√‘(𝐵↑2)))
107, 9syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
1110breq1d 5134 . . . . 5 (𝐵 ∈ ℕ0 → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
1211adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
13 nn0sqcl 14112 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
1413nn0red 12568 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
155sqge0d 14160 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
1614, 15jca 511 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
1716anim2i 617 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))))
1817ancomd 461 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)))
19 sqrtle 15284 . . . . 5 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2018, 19syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2112, 20bitr4d 282 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (𝐵↑2) ≤ 𝐴))
22 peano2nn0 12546 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2322nn0red 12568 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℝ)
24 1red 11241 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 1 ∈ ℝ)
25 0le1 11765 . . . . . . . . . 10 0 ≤ 1
2625a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 0 ≤ 1)
275, 24, 6, 26addge0d 11818 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2823, 27sqrtsqd 15443 . . . . . . 7 (𝐵 ∈ ℕ0 → (√‘((𝐵 + 1)↑2)) = (𝐵 + 1))
2928eqcomd 2742 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 1) = (√‘((𝐵 + 1)↑2)))
3029breq2d 5136 . . . . 5 (𝐵 ∈ ℕ0 → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3130adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
32 2nn0 12523 . . . . . . . . 9 2 ∈ ℕ0
3332a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ0 → 2 ∈ ℕ0)
3422, 33nn0expcld 14269 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℕ0)
3534nn0red 12568 . . . . . 6 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℝ)
3623sqge0d 14160 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ ((𝐵 + 1)↑2))
3735, 36jca 511 . . . . 5 (𝐵 ∈ ℕ0 → (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2)))
38 sqrtlt 15285 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2))) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3937, 38sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
4031, 39bitr4d 282 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ 𝐴 < ((𝐵 + 1)↑2)))
4121, 40anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
424, 41bitrd 279 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  2c2 12300  0cn0 12506  cz 12593  cfl 13812  cexp 14084  csqrt 15257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259
This theorem is referenced by:  flsqrt5  47575
  Copyright terms: Public domain W3C validator