Proof of Theorem flsqrt
Step | Hyp | Ref
| Expression |
1 | | resqrtcl 14965 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) →
(√‘𝐴) ∈
ℝ) |
2 | | nn0z 12343 |
. . 3
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℤ) |
3 | | flbi 13536 |
. . 3
⊢
(((√‘𝐴)
∈ ℝ ∧ 𝐵
∈ ℤ) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)))) |
4 | 1, 2, 3 | syl2an 596 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) →
((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)))) |
5 | | nn0re 12242 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
6 | | nn0ge0 12258 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 𝐵) |
7 | 5, 6 | jca 512 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵)) |
8 | | sqrtsq 14981 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) →
(√‘(𝐵↑2))
= 𝐵) |
9 | 8 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) → 𝐵 = (√‘(𝐵↑2))) |
10 | 7, 9 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ 𝐵 =
(√‘(𝐵↑2))) |
11 | 10 | breq1d 5084 |
. . . . 5
⊢ (𝐵 ∈ ℕ0
→ (𝐵 ≤
(√‘𝐴) ↔
(√‘(𝐵↑2))
≤ (√‘𝐴))) |
12 | 11 | adantl 482 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤
(√‘𝐴))) |
13 | | nn0sqcl 13810 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
→ (𝐵↑2) ∈
ℕ0) |
14 | 13 | nn0red 12294 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ (𝐵↑2) ∈
ℝ) |
15 | 5 | sqge0d 13966 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ (𝐵↑2)) |
16 | 14, 15 | jca 512 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ ((𝐵↑2) ∈
ℝ ∧ 0 ≤ (𝐵↑2))) |
17 | 16 | anim2i 617 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ ((𝐵↑2) ∈ ℝ ∧ 0
≤ (𝐵↑2)))) |
18 | 17 | ancomd 462 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → (((𝐵↑2) ∈ ℝ ∧ 0
≤ (𝐵↑2)) ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴))) |
19 | | sqrtle 14972 |
. . . . 5
⊢ ((((𝐵↑2) ∈ ℝ ∧ 0
≤ (𝐵↑2)) ∧
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴))) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴))) |
21 | 12, 20 | bitr4d 281 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (𝐵↑2) ≤ 𝐴)) |
22 | | peano2nn0 12273 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
→ (𝐵 + 1) ∈
ℕ0) |
23 | 22 | nn0red 12294 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ (𝐵 + 1) ∈
ℝ) |
24 | | 1red 10976 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
→ 1 ∈ ℝ) |
25 | | 0le1 11498 |
. . . . . . . . . 10
⊢ 0 ≤
1 |
26 | 25 | a1i 11 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 1) |
27 | 5, 24, 6, 26 | addge0d 11551 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ (𝐵 +
1)) |
28 | 23, 27 | sqrtsqd 15131 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ (√‘((𝐵 +
1)↑2)) = (𝐵 +
1)) |
29 | 28 | eqcomd 2744 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ (𝐵 + 1) =
(√‘((𝐵 +
1)↑2))) |
30 | 29 | breq2d 5086 |
. . . . 5
⊢ (𝐵 ∈ ℕ0
→ ((√‘𝐴)
< (𝐵 + 1) ↔
(√‘𝐴) <
(√‘((𝐵 +
1)↑2)))) |
31 | 30 | adantl 482 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) →
((√‘𝐴) <
(𝐵 + 1) ↔
(√‘𝐴) <
(√‘((𝐵 +
1)↑2)))) |
32 | | 2nn0 12250 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ 2 ∈ ℕ0) |
34 | 22, 33 | nn0expcld 13961 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ ((𝐵 + 1)↑2)
∈ ℕ0) |
35 | 34 | nn0red 12294 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ ((𝐵 + 1)↑2)
∈ ℝ) |
36 | 23 | sqge0d 13966 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ ((𝐵 +
1)↑2)) |
37 | 35, 36 | jca 512 |
. . . . 5
⊢ (𝐵 ∈ ℕ0
→ (((𝐵 + 1)↑2)
∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2))) |
38 | | sqrtlt 14973 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (((𝐵 + 1)↑2) ∈ ℝ
∧ 0 ≤ ((𝐵 +
1)↑2))) → (𝐴 <
((𝐵 + 1)↑2) ↔
(√‘𝐴) <
(√‘((𝐵 +
1)↑2)))) |
39 | 37, 38 | sylan2 593 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 +
1)↑2)))) |
40 | 31, 39 | bitr4d 281 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) →
((√‘𝐴) <
(𝐵 + 1) ↔ 𝐴 < ((𝐵 + 1)↑2))) |
41 | 21, 40 | anbi12d 631 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) |
42 | 4, 41 | bitrd 278 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℕ0) →
((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) |