Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt Structured version   Visualization version   GIF version

Theorem flsqrt 47585
Description: A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))

Proof of Theorem flsqrt
StepHypRef Expression
1 resqrtcl 15293 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
2 nn0z 12640 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
3 flbi 13857 . . 3 (((√‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
41, 2, 3syl2an 596 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
5 nn0re 12537 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
6 nn0ge0 12553 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
75, 6jca 511 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8 sqrtsq 15309 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (√‘(𝐵↑2)) = 𝐵)
98eqcomd 2742 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 = (√‘(𝐵↑2)))
107, 9syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
1110breq1d 5152 . . . . 5 (𝐵 ∈ ℕ0 → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
1211adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
13 nn0sqcl 14131 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
1413nn0red 12590 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
155sqge0d 14178 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
1614, 15jca 511 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
1716anim2i 617 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))))
1817ancomd 461 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)))
19 sqrtle 15300 . . . . 5 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2018, 19syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2112, 20bitr4d 282 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (𝐵↑2) ≤ 𝐴))
22 peano2nn0 12568 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2322nn0red 12590 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℝ)
24 1red 11263 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 1 ∈ ℝ)
25 0le1 11787 . . . . . . . . . 10 0 ≤ 1
2625a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 0 ≤ 1)
275, 24, 6, 26addge0d 11840 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2823, 27sqrtsqd 15459 . . . . . . 7 (𝐵 ∈ ℕ0 → (√‘((𝐵 + 1)↑2)) = (𝐵 + 1))
2928eqcomd 2742 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 1) = (√‘((𝐵 + 1)↑2)))
3029breq2d 5154 . . . . 5 (𝐵 ∈ ℕ0 → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3130adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
32 2nn0 12545 . . . . . . . . 9 2 ∈ ℕ0
3332a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ0 → 2 ∈ ℕ0)
3422, 33nn0expcld 14286 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℕ0)
3534nn0red 12590 . . . . . 6 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℝ)
3623sqge0d 14178 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ ((𝐵 + 1)↑2))
3735, 36jca 511 . . . . 5 (𝐵 ∈ ℕ0 → (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2)))
38 sqrtlt 15301 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2))) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3937, 38sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
4031, 39bitr4d 282 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ 𝐴 < ((𝐵 + 1)↑2)))
4121, 40anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
424, 41bitrd 279 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  2c2 12322  0cn0 12528  cz 12615  cfl 13831  cexp 14103  csqrt 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275
This theorem is referenced by:  flsqrt5  47586
  Copyright terms: Public domain W3C validator