Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt Structured version   Visualization version   GIF version

Theorem flsqrt 44110
Description: A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))

Proof of Theorem flsqrt
StepHypRef Expression
1 resqrtcl 14605 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
2 nn0z 11993 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
3 flbi 13181 . . 3 (((√‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
41, 2, 3syl2an 598 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
5 nn0re 11894 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
6 nn0ge0 11910 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
75, 6jca 515 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8 sqrtsq 14621 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (√‘(𝐵↑2)) = 𝐵)
98eqcomd 2804 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 = (√‘(𝐵↑2)))
107, 9syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
1110breq1d 5040 . . . . 5 (𝐵 ∈ ℕ0 → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
1211adantl 485 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
13 nn0sqcl 13452 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
1413nn0red 11944 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
155sqge0d 13608 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
1614, 15jca 515 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
1716anim2i 619 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))))
1817ancomd 465 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)))
19 sqrtle 14612 . . . . 5 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2018, 19syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2112, 20bitr4d 285 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (𝐵↑2) ≤ 𝐴))
22 peano2nn0 11925 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2322nn0red 11944 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℝ)
24 1red 10631 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 1 ∈ ℝ)
25 0le1 11152 . . . . . . . . . 10 0 ≤ 1
2625a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 0 ≤ 1)
275, 24, 6, 26addge0d 11205 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2823, 27sqrtsqd 14771 . . . . . . 7 (𝐵 ∈ ℕ0 → (√‘((𝐵 + 1)↑2)) = (𝐵 + 1))
2928eqcomd 2804 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 1) = (√‘((𝐵 + 1)↑2)))
3029breq2d 5042 . . . . 5 (𝐵 ∈ ℕ0 → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3130adantl 485 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
32 2nn0 11902 . . . . . . . . 9 2 ∈ ℕ0
3332a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ0 → 2 ∈ ℕ0)
3422, 33nn0expcld 13603 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℕ0)
3534nn0red 11944 . . . . . 6 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℝ)
3623sqge0d 13608 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ ((𝐵 + 1)↑2))
3735, 36jca 515 . . . . 5 (𝐵 ∈ ℕ0 → (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2)))
38 sqrtlt 14613 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2))) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3937, 38sylan2 595 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
4031, 39bitr4d 285 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ 𝐴 < ((𝐵 + 1)↑2)))
4121, 40anbi12d 633 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
424, 41bitrd 282 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  2c2 11680  0cn0 11885  cz 11969  cfl 13155  cexp 13425  csqrt 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586
This theorem is referenced by:  flsqrt5  44111
  Copyright terms: Public domain W3C validator