Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt Structured version   Visualization version   GIF version

Theorem flsqrt 45045
Description: A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))

Proof of Theorem flsqrt
StepHypRef Expression
1 resqrtcl 14965 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
2 nn0z 12343 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
3 flbi 13536 . . 3 (((√‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
41, 2, 3syl2an 596 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ (𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1))))
5 nn0re 12242 . . . . . . . 8 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
6 nn0ge0 12258 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
75, 6jca 512 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8 sqrtsq 14981 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (√‘(𝐵↑2)) = 𝐵)
98eqcomd 2744 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 𝐵 = (√‘(𝐵↑2)))
107, 9syl 17 . . . . . 6 (𝐵 ∈ ℕ0𝐵 = (√‘(𝐵↑2)))
1110breq1d 5084 . . . . 5 (𝐵 ∈ ℕ0 → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
1211adantl 482 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
13 nn0sqcl 13810 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℕ0)
1413nn0red 12294 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵↑2) ∈ ℝ)
155sqge0d 13966 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵↑2))
1614, 15jca 512 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)))
1716anim2i 617 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2))))
1817ancomd 462 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)))
19 sqrtle 14972 . . . . 5 ((((𝐵↑2) ∈ ℝ ∧ 0 ≤ (𝐵↑2)) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2018, 19syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵↑2) ≤ 𝐴 ↔ (√‘(𝐵↑2)) ≤ (√‘𝐴)))
2112, 20bitr4d 281 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐵 ≤ (√‘𝐴) ↔ (𝐵↑2) ≤ 𝐴))
22 peano2nn0 12273 . . . . . . . . 9 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2322nn0red 12294 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℝ)
24 1red 10976 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 1 ∈ ℝ)
25 0le1 11498 . . . . . . . . . 10 0 ≤ 1
2625a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ0 → 0 ≤ 1)
275, 24, 6, 26addge0d 11551 . . . . . . . 8 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2823, 27sqrtsqd 15131 . . . . . . 7 (𝐵 ∈ ℕ0 → (√‘((𝐵 + 1)↑2)) = (𝐵 + 1))
2928eqcomd 2744 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 + 1) = (√‘((𝐵 + 1)↑2)))
3029breq2d 5086 . . . . 5 (𝐵 ∈ ℕ0 → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3130adantl 482 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
32 2nn0 12250 . . . . . . . . 9 2 ∈ ℕ0
3332a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ0 → 2 ∈ ℕ0)
3422, 33nn0expcld 13961 . . . . . . 7 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℕ0)
3534nn0red 12294 . . . . . 6 (𝐵 ∈ ℕ0 → ((𝐵 + 1)↑2) ∈ ℝ)
3623sqge0d 13966 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ ((𝐵 + 1)↑2))
3735, 36jca 512 . . . . 5 (𝐵 ∈ ℕ0 → (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2)))
38 sqrtlt 14973 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝐵 + 1)↑2) ∈ ℝ ∧ 0 ≤ ((𝐵 + 1)↑2))) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
3937, 38sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → (𝐴 < ((𝐵 + 1)↑2) ↔ (√‘𝐴) < (√‘((𝐵 + 1)↑2))))
4031, 39bitr4d 281 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((√‘𝐴) < (𝐵 + 1) ↔ 𝐴 < ((𝐵 + 1)↑2)))
4121, 40anbi12d 631 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((𝐵 ≤ (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
424, 41bitrd 278 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  2c2 12028  0cn0 12233  cz 12319  cfl 13510  cexp 13782  csqrt 14944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946
This theorem is referenced by:  flsqrt5  45046
  Copyright terms: Public domain W3C validator