MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnring Structured version   Visualization version   GIF version

Theorem cnring 20560
Description: The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
cnring fld ∈ Ring

Proof of Theorem cnring
StepHypRef Expression
1 cncrng 20559 . 2 fld ∈ CRing
2 crngring 19304 . 2 (ℂfld ∈ CRing → ℂfld ∈ Ring)
31, 2ax-mp 5 1 fld ∈ Ring
Colors of variables: wff setvar class
Syntax hints:  wcel 2115  Ringcrg 19293  CRingccrg 19294  fldccnfld 20538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-z 11975  df-dec 12092  df-uz 12237  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-cmn 18904  df-mgp 19236  df-ring 19295  df-cring 19296  df-cnfld 20539
This theorem is referenced by:  cnfld0  20562  cnfld1  20563  cnfldneg  20564  cnfldsub  20566  cndrng  20567  cnflddiv  20568  cnfldinv  20569  cnfldmulg  20570  cnfldexp  20571  cnsrng  20572  cnsubmlem  20586  cnsubglem  20587  cnsubrglem  20588  cnsubdrglem  20589  absabv  20595  cnmgpid  20600  gsumfsum  20605  expmhm  20607  nn0srg  20608  rge0srg  20609  expghm  20636  zrhpsgnmhm  20721  regsumsupp  20759  cnngp  23381  cnfldtgp  23470  cnlmod  23741  cnrlmod  23744  cnncvsaddassdemo  23764  cphsubrglem  23778  tdeglem1  24655  tdeglem3  24656  tdeglem4  24657  tdeglem2  24658  plypf1  24805  dvply2  24878  dvnply  24880  taylfvallem  24949  taylf  24952  tayl0  24953  taylpfval  24956  taylply  24960  efabl  25138  efsubm  25139  jensenlem1  25568  jensenlem2  25569  jensen  25570  amgmlem  25571  amgm  25572  wilthlem2  25650  wilthlem3  25651  dchrelbas3  25818  dchrghm  25836  dchrabs  25840  lgseisenlem4  25958  psgnid  30764  cnmsgn0g  30813  altgnsg  30816  ccfldsrarelvec  31084  xrge0iifmhm  31207  zringnm  31226  rezh  31237  rngunsnply  39970  proot1ex  39998  amgm2d  40760  amgm3d  40761  amgm4d  40762  amgmwlem  45181  amgmlemALT  45182  amgmw2d  45183
  Copyright terms: Public domain W3C validator