![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnring | Structured version Visualization version GIF version |
Description: The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnring | ⊢ ℂfld ∈ Ring |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncrng 20163 | . 2 ⊢ ℂfld ∈ CRing | |
2 | crngring 18945 | . 2 ⊢ (ℂfld ∈ CRing → ℂfld ∈ Ring) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ℂfld ∈ Ring |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Ringcrg 18934 CRingccrg 18935 ℂfldccnfld 20142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-plusg 16351 df-mulr 16352 df-starv 16353 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-cmn 18581 df-mgp 18877 df-ring 18936 df-cring 18937 df-cnfld 20143 |
This theorem is referenced by: cnfld0 20166 cnfld1 20167 cnfldneg 20168 cnfldsub 20170 cndrng 20171 cnflddiv 20172 cnfldinv 20173 cnfldmulg 20174 cnfldexp 20175 cnsrng 20176 cnsubmlem 20190 cnsubglem 20191 cnsubrglem 20192 cnsubdrglem 20193 absabv 20199 cnmgpid 20204 gsumfsum 20209 expmhm 20211 nn0srg 20212 rge0srg 20213 expghm 20240 zrhpsgnmhm 20325 regsumsupp 20365 cnngp 22991 cnfldtgp 23080 cnlmod 23347 cnrlmod 23350 cnncvsaddassdemo 23370 cphsubrglem 23384 tdeglem1 24255 tdeglem3 24256 tdeglem4 24257 tdeglem2 24258 plypf1 24405 dvply2 24478 dvnply 24480 taylfvallem 24549 taylf 24552 tayl0 24553 taylpfval 24556 taylply 24560 efabl 24734 efsubm 24735 jensenlem1 25165 jensenlem2 25166 jensen 25167 amgmlem 25168 amgm 25169 wilthlem2 25247 wilthlem3 25248 dchrelbas3 25415 dchrghm 25433 dchrabs 25437 lgseisenlem4 25555 psgnid 30445 xrge0iifmhm 30583 zringnm 30602 rezh 30613 rngunsnply 38684 proot1ex 38720 amgm2d 39439 amgm3d 39440 amgm4d 39441 amgmwlem 43636 amgmlemALT 43637 amgmw2d 43638 |
Copyright terms: Public domain | W3C validator |