| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstr | Structured version Visualization version GIF version | ||
| Description: Trisecting an angle is an impossible construction. Given for example 𝑂 = (exp‘((i · (2 · π)) / 3)), which represents an angle of ((2 · π) / 3), the cube root of 𝑂 is not constructible with straightedge and compass, while 𝑂 itself is constructible. This is the second part of Metamath 100 proof #8. Theorem 7.14 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| cos9thpiminply.2 | ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) |
| Ref | Expression |
|---|---|
| cos9thpinconstr | ⊢ (𝑂 ∈ Constr ∧ 𝑍 ∉ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cos9thpinconstr.1 | . . 3 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 2 | 1 | cos9thpinconstrlem1 33797 | . 2 ⊢ 𝑂 ∈ Constr |
| 3 | cos9thpiminply.2 | . . . . 5 ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑍 + (1 / 𝑍)) = (𝑍 + (1 / 𝑍)) | |
| 5 | 1, 3, 4 | cos9thpinconstrlem2 33798 | . . . 4 ⊢ ¬ (𝑍 + (1 / 𝑍)) ∈ Constr |
| 6 | id 22 | . . . . 5 ⊢ (𝑍 ∈ Constr → 𝑍 ∈ Constr) | |
| 7 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝑍 ∈ Constr → 𝑍 = (𝑂↑𝑐(1 / 3))) |
| 8 | ax-icn 11062 | . . . . . . . . . . . . 13 ⊢ i ∈ ℂ | |
| 9 | 8 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑍 ∈ Constr → i ∈ ℂ) |
| 10 | 2cnd 12200 | . . . . . . . . . . . . 13 ⊢ (𝑍 ∈ Constr → 2 ∈ ℂ) | |
| 11 | picn 26392 | . . . . . . . . . . . . . 14 ⊢ π ∈ ℂ | |
| 12 | 11 | a1i 11 | . . . . . . . . . . . . 13 ⊢ (𝑍 ∈ Constr → π ∈ ℂ) |
| 13 | 10, 12 | mulcld 11129 | . . . . . . . . . . . 12 ⊢ (𝑍 ∈ Constr → (2 · π) ∈ ℂ) |
| 14 | 9, 13 | mulcld 11129 | . . . . . . . . . . 11 ⊢ (𝑍 ∈ Constr → (i · (2 · π)) ∈ ℂ) |
| 15 | 3cn 12203 | . . . . . . . . . . . 12 ⊢ 3 ∈ ℂ | |
| 16 | 15 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑍 ∈ Constr → 3 ∈ ℂ) |
| 17 | 3ne0 12228 | . . . . . . . . . . . 12 ⊢ 3 ≠ 0 | |
| 18 | 17 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑍 ∈ Constr → 3 ≠ 0) |
| 19 | 14, 16, 18 | divcld 11894 | . . . . . . . . . 10 ⊢ (𝑍 ∈ Constr → ((i · (2 · π)) / 3) ∈ ℂ) |
| 20 | 19 | efcld 15987 | . . . . . . . . 9 ⊢ (𝑍 ∈ Constr → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 21 | 1, 20 | eqeltrid 2835 | . . . . . . . 8 ⊢ (𝑍 ∈ Constr → 𝑂 ∈ ℂ) |
| 22 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑍 ∈ Constr → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 23 | 19 | efne0d 16001 | . . . . . . . . 9 ⊢ (𝑍 ∈ Constr → (exp‘((i · (2 · π)) / 3)) ≠ 0) |
| 24 | 22, 23 | eqnetrd 2995 | . . . . . . . 8 ⊢ (𝑍 ∈ Constr → 𝑂 ≠ 0) |
| 25 | 16, 18 | reccld 11887 | . . . . . . . 8 ⊢ (𝑍 ∈ Constr → (1 / 3) ∈ ℂ) |
| 26 | 21, 24, 25 | cxpne0d 26647 | . . . . . . 7 ⊢ (𝑍 ∈ Constr → (𝑂↑𝑐(1 / 3)) ≠ 0) |
| 27 | 7, 26 | eqnetrd 2995 | . . . . . 6 ⊢ (𝑍 ∈ Constr → 𝑍 ≠ 0) |
| 28 | 6, 27 | constrinvcl 33781 | . . . . 5 ⊢ (𝑍 ∈ Constr → (1 / 𝑍) ∈ Constr) |
| 29 | 6, 28 | constraddcl 33770 | . . . 4 ⊢ (𝑍 ∈ Constr → (𝑍 + (1 / 𝑍)) ∈ Constr) |
| 30 | 5, 29 | mto 197 | . . 3 ⊢ ¬ 𝑍 ∈ Constr |
| 31 | 30 | nelir 3035 | . 2 ⊢ 𝑍 ∉ Constr |
| 32 | 2, 31 | pm3.2i 470 | 1 ⊢ (𝑂 ∈ Constr ∧ 𝑍 ∉ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 ici 11005 + caddc 11006 · cmul 11008 / cdiv 11771 2c2 12177 3c3 12178 expce 15965 πcpi 15970 ↑𝑐ccxp 26489 Constrcconstr 33737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-r1 9654 df-rank 9655 df-dju 9791 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-substr 14546 df-pfx 14576 df-shft 14971 df-sgn 14991 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-dvds 16161 df-gcd 16403 df-prm 16580 df-pc 16746 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ocomp 17179 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-pws 17350 df-xrs 17403 df-qtop 17408 df-imas 17409 df-qus 17410 df-xps 17411 df-mre 17485 df-mrc 17486 df-mri 17487 df-acs 17488 df-proset 18197 df-drs 18198 df-poset 18216 df-ipo 18431 df-chn 18509 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-nsg 19034 df-eqg 19035 df-ghm 19123 df-gim 19169 df-cntz 19227 df-oppg 19256 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-irred 20275 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20426 df-subrng 20459 df-subrg 20483 df-rlreg 20607 df-domn 20608 df-idom 20609 df-drng 20644 df-field 20645 df-sdrg 20700 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lmhm 20954 df-lmim 20955 df-lmic 20956 df-lbs 21007 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-rsp 21144 df-2idl 21185 df-lpidl 21257 df-lpir 21258 df-pid 21272 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-dsmm 21667 df-frlm 21682 df-uvc 21718 df-lindf 21741 df-linds 21742 df-assa 21788 df-asp 21789 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-evls 22007 df-evl 22008 df-psr1 22090 df-vr1 22091 df-ply1 22092 df-coe1 22093 df-evls1 22228 df-evl1 22229 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-mdeg 25985 df-deg1 25986 df-mon1 26061 df-uc1p 26062 df-q1p 26063 df-r1p 26064 df-ig1p 26065 df-log 26490 df-cxp 26491 df-fldgen 33272 df-mxidl 33420 df-dim 33607 df-fldext 33649 df-extdg 33650 df-irng 33692 df-minply 33708 df-constr 33738 |
| This theorem is referenced by: trisecnconstr 33800 |
| Copyright terms: Public domain | W3C validator |