| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrsdrg | Structured version Visualization version GIF version | ||
| Description: Constructible numbers form a subfield of the complex numbers. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrsdrg | ⊢ Constr ∈ (SubDRing‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldfld 33311 | . . . . 5 ⊢ ℂfld ∈ Field | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℂfld ∈ Field) |
| 3 | 2 | flddrngd 20710 | . . 3 ⊢ (⊤ → ℂfld ∈ DivRing) |
| 4 | 3 | drngringd 20706 | . . . 4 ⊢ (⊤ → ℂfld ∈ Ring) |
| 5 | 3 | drnggrpd 20707 | . . . . 5 ⊢ (⊤ → ℂfld ∈ Grp) |
| 6 | simpr 484 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → 𝑥 ∈ Constr) | |
| 7 | 6 | constrcn 33745 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → 𝑥 ∈ ℂ) |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ Constr → 𝑥 ∈ ℂ)) |
| 9 | 8 | ssrdv 3969 | . . . . 5 ⊢ (⊤ → Constr ⊆ ℂ) |
| 10 | 1zzd 12631 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℤ) | |
| 11 | 10 | zconstr 33749 | . . . . . 6 ⊢ (⊤ → 1 ∈ Constr) |
| 12 | 11 | ne0d 4322 | . . . . 5 ⊢ (⊤ → Constr ≠ ∅) |
| 13 | simplr 768 | . . . . . . . . 9 ⊢ (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → 𝑥 ∈ Constr) | |
| 14 | simpr 484 | . . . . . . . . 9 ⊢ (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → 𝑦 ∈ Constr) | |
| 15 | 13, 14 | constraddcl 33747 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → (𝑥 + 𝑦) ∈ Constr) |
| 16 | 15 | ralrimiva 3133 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → ∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr) |
| 17 | cnfldneg 21371 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥) | |
| 18 | 7, 17 | syl 17 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → ((invg‘ℂfld)‘𝑥) = -𝑥) |
| 19 | 6 | constrnegcl 33748 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → -𝑥 ∈ Constr) |
| 20 | 18, 19 | eqeltrd 2833 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → ((invg‘ℂfld)‘𝑥) ∈ Constr) |
| 21 | 16, 20 | jca 511 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ Constr) → (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr)) |
| 22 | 21 | ralrimiva 3133 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ Constr (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr)) |
| 23 | cnfldbas 21331 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 24 | cnfldadd 21333 | . . . . . . 7 ⊢ + = (+g‘ℂfld) | |
| 25 | eqid 2734 | . . . . . . 7 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 26 | 23, 24, 25 | issubg2 19129 | . . . . . 6 ⊢ (ℂfld ∈ Grp → (Constr ∈ (SubGrp‘ℂfld) ↔ (Constr ⊆ ℂ ∧ Constr ≠ ∅ ∧ ∀𝑥 ∈ Constr (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr)))) |
| 27 | 26 | biimpar 477 | . . . . 5 ⊢ ((ℂfld ∈ Grp ∧ (Constr ⊆ ℂ ∧ Constr ≠ ∅ ∧ ∀𝑥 ∈ Constr (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr))) → Constr ∈ (SubGrp‘ℂfld)) |
| 28 | 5, 9, 12, 22, 27 | syl13anc 1373 | . . . 4 ⊢ (⊤ → Constr ∈ (SubGrp‘ℂfld)) |
| 29 | 13, 14 | constrmulcl 33756 | . . . . . 6 ⊢ (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → (𝑥 · 𝑦) ∈ Constr) |
| 30 | 29 | anasss 466 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ Constr ∧ 𝑦 ∈ Constr)) → (𝑥 · 𝑦) ∈ Constr) |
| 31 | 30 | ralrimivva 3189 | . . . 4 ⊢ (⊤ → ∀𝑥 ∈ Constr ∀𝑦 ∈ Constr (𝑥 · 𝑦) ∈ Constr) |
| 32 | cnfld1 21369 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
| 33 | cnfldmul 21335 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 34 | 23, 32, 33 | issubrg2 20561 | . . . . 5 ⊢ (ℂfld ∈ Ring → (Constr ∈ (SubRing‘ℂfld) ↔ (Constr ∈ (SubGrp‘ℂfld) ∧ 1 ∈ Constr ∧ ∀𝑥 ∈ Constr ∀𝑦 ∈ Constr (𝑥 · 𝑦) ∈ Constr))) |
| 35 | 34 | biimpar 477 | . . . 4 ⊢ ((ℂfld ∈ Ring ∧ (Constr ∈ (SubGrp‘ℂfld) ∧ 1 ∈ Constr ∧ ∀𝑥 ∈ Constr ∀𝑦 ∈ Constr (𝑥 · 𝑦) ∈ Constr)) → Constr ∈ (SubRing‘ℂfld)) |
| 36 | 4, 28, 11, 31, 35 | syl13anc 1373 | . . 3 ⊢ (⊤ → Constr ∈ (SubRing‘ℂfld)) |
| 37 | simpr 484 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ∈ (Constr ∖ {0})) | |
| 38 | 37 | eldifad 3943 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ∈ Constr) |
| 39 | 38 | constrcn 33745 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ∈ ℂ) |
| 40 | eldifsni 4770 | . . . . . . 7 ⊢ (𝑥 ∈ (Constr ∖ {0}) → 𝑥 ≠ 0) | |
| 41 | 40 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ≠ 0) |
| 42 | cnfldinv 21378 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) | |
| 43 | 39, 41, 42 | syl2anc 584 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥)) |
| 44 | 38, 41 | constrinvcl 33758 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → (1 / 𝑥) ∈ Constr) |
| 45 | 43, 44 | eqeltrd 2833 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → ((invr‘ℂfld)‘𝑥) ∈ Constr) |
| 46 | 45 | ralrimiva 3133 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ (Constr ∖ {0})((invr‘ℂfld)‘𝑥) ∈ Constr) |
| 47 | eqid 2734 | . . . 4 ⊢ (invr‘ℂfld) = (invr‘ℂfld) | |
| 48 | cnfld0 21368 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 49 | 47, 48 | issdrg2 20765 | . . 3 ⊢ (Constr ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ Constr ∈ (SubRing‘ℂfld) ∧ ∀𝑥 ∈ (Constr ∖ {0})((invr‘ℂfld)‘𝑥) ∈ Constr)) |
| 50 | 3, 36, 46, 49 | syl3anbrc 1343 | . 2 ⊢ (⊤ → Constr ∈ (SubDRing‘ℂfld)) |
| 51 | 50 | mptru 1546 | 1 ⊢ Constr ∈ (SubDRing‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 {csn 4606 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 -cneg 11475 / cdiv 11902 Grpcgrp 18921 invgcminusg 18922 SubGrpcsubg 19108 Ringcrg 20199 invrcinvr 20356 SubRingcsubrg 20538 DivRingcdr 20698 Fieldcfield 20699 SubDRingcsdrg 20756 ℂfldccnfld 21327 Constrcconstr 33714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 df-pi 16091 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 df-cntz 19305 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-cring 20202 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-subrng 20515 df-subrg 20539 df-drng 20700 df-field 20701 df-sdrg 20757 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-fbas 21324 df-fg 21325 df-cnfld 21328 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-cld 22974 df-ntr 22975 df-cls 22976 df-nei 23053 df-lp 23091 df-perf 23092 df-cn 23182 df-cnp 23183 df-haus 23270 df-tx 23517 df-hmeo 23710 df-fil 23801 df-fm 23893 df-flim 23894 df-flf 23895 df-xms 24276 df-ms 24277 df-tms 24278 df-cncf 24841 df-limc 25838 df-dv 25839 df-log 26535 df-constr 33715 |
| This theorem is referenced by: constrfld 33761 |
| Copyright terms: Public domain | W3C validator |