Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrsdrg Structured version   Visualization version   GIF version

Theorem constrsdrg 33780
Description: Constructible numbers form a subfield of the complex numbers. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Assertion
Ref Expression
constrsdrg Constr ∈ (SubDRing‘ℂfld)

Proof of Theorem constrsdrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldfld 33299 . . . . 5 fld ∈ Field
21a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
32flddrngd 20651 . . 3 (⊤ → ℂfld ∈ DivRing)
43drngringd 20647 . . . 4 (⊤ → ℂfld ∈ Ring)
53drnggrpd 20648 . . . . 5 (⊤ → ℂfld ∈ Grp)
6 simpr 484 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ Constr) → 𝑥 ∈ Constr)
76constrcn 33765 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ Constr) → 𝑥 ∈ ℂ)
87ex 412 . . . . . 6 (⊤ → (𝑥 ∈ Constr → 𝑥 ∈ ℂ))
98ssrdv 3935 . . . . 5 (⊤ → Constr ⊆ ℂ)
10 1zzd 12498 . . . . . . 7 (⊤ → 1 ∈ ℤ)
1110zconstr 33769 . . . . . 6 (⊤ → 1 ∈ Constr)
1211ne0d 4287 . . . . 5 (⊤ → Constr ≠ ∅)
13 simplr 768 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → 𝑥 ∈ Constr)
14 simpr 484 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → 𝑦 ∈ Constr)
1513, 14constraddcl 33767 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → (𝑥 + 𝑦) ∈ Constr)
1615ralrimiva 3124 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ Constr) → ∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr)
17 cnfldneg 21327 . . . . . . . . 9 (𝑥 ∈ ℂ → ((invg‘ℂfld)‘𝑥) = -𝑥)
187, 17syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ Constr) → ((invg‘ℂfld)‘𝑥) = -𝑥)
196constrnegcl 33768 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ Constr) → -𝑥 ∈ Constr)
2018, 19eqeltrd 2831 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ Constr) → ((invg‘ℂfld)‘𝑥) ∈ Constr)
2116, 20jca 511 . . . . . 6 ((⊤ ∧ 𝑥 ∈ Constr) → (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr))
2221ralrimiva 3124 . . . . 5 (⊤ → ∀𝑥 ∈ Constr (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr))
23 cnfldbas 21290 . . . . . . 7 ℂ = (Base‘ℂfld)
24 cnfldadd 21292 . . . . . . 7 + = (+g‘ℂfld)
25 eqid 2731 . . . . . . 7 (invg‘ℂfld) = (invg‘ℂfld)
2623, 24, 25issubg2 19049 . . . . . 6 (ℂfld ∈ Grp → (Constr ∈ (SubGrp‘ℂfld) ↔ (Constr ⊆ ℂ ∧ Constr ≠ ∅ ∧ ∀𝑥 ∈ Constr (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr))))
2726biimpar 477 . . . . 5 ((ℂfld ∈ Grp ∧ (Constr ⊆ ℂ ∧ Constr ≠ ∅ ∧ ∀𝑥 ∈ Constr (∀𝑦 ∈ Constr (𝑥 + 𝑦) ∈ Constr ∧ ((invg‘ℂfld)‘𝑥) ∈ Constr))) → Constr ∈ (SubGrp‘ℂfld))
285, 9, 12, 22, 27syl13anc 1374 . . . 4 (⊤ → Constr ∈ (SubGrp‘ℂfld))
2913, 14constrmulcl 33776 . . . . . 6 (((⊤ ∧ 𝑥 ∈ Constr) ∧ 𝑦 ∈ Constr) → (𝑥 · 𝑦) ∈ Constr)
3029anasss 466 . . . . 5 ((⊤ ∧ (𝑥 ∈ Constr ∧ 𝑦 ∈ Constr)) → (𝑥 · 𝑦) ∈ Constr)
3130ralrimivva 3175 . . . 4 (⊤ → ∀𝑥 ∈ Constr ∀𝑦 ∈ Constr (𝑥 · 𝑦) ∈ Constr)
32 cnfld1 21325 . . . . . 6 1 = (1r‘ℂfld)
33 cnfldmul 21294 . . . . . 6 · = (.r‘ℂfld)
3423, 32, 33issubrg2 20502 . . . . 5 (ℂfld ∈ Ring → (Constr ∈ (SubRing‘ℂfld) ↔ (Constr ∈ (SubGrp‘ℂfld) ∧ 1 ∈ Constr ∧ ∀𝑥 ∈ Constr ∀𝑦 ∈ Constr (𝑥 · 𝑦) ∈ Constr)))
3534biimpar 477 . . . 4 ((ℂfld ∈ Ring ∧ (Constr ∈ (SubGrp‘ℂfld) ∧ 1 ∈ Constr ∧ ∀𝑥 ∈ Constr ∀𝑦 ∈ Constr (𝑥 · 𝑦) ∈ Constr)) → Constr ∈ (SubRing‘ℂfld))
364, 28, 11, 31, 35syl13anc 1374 . . 3 (⊤ → Constr ∈ (SubRing‘ℂfld))
37 simpr 484 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ∈ (Constr ∖ {0}))
3837eldifad 3909 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ∈ Constr)
3938constrcn 33765 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ∈ ℂ)
40 eldifsni 4737 . . . . . . 7 (𝑥 ∈ (Constr ∖ {0}) → 𝑥 ≠ 0)
4140adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → 𝑥 ≠ 0)
42 cnfldinv 21334 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
4339, 41, 42syl2anc 584 . . . . 5 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
4438, 41constrinvcl 33778 . . . . 5 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → (1 / 𝑥) ∈ Constr)
4543, 44eqeltrd 2831 . . . 4 ((⊤ ∧ 𝑥 ∈ (Constr ∖ {0})) → ((invr‘ℂfld)‘𝑥) ∈ Constr)
4645ralrimiva 3124 . . 3 (⊤ → ∀𝑥 ∈ (Constr ∖ {0})((invr‘ℂfld)‘𝑥) ∈ Constr)
47 eqid 2731 . . . 4 (invr‘ℂfld) = (invr‘ℂfld)
48 cnfld0 21324 . . . 4 0 = (0g‘ℂfld)
4947, 48issdrg2 20705 . . 3 (Constr ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ Constr ∈ (SubRing‘ℂfld) ∧ ∀𝑥 ∈ (Constr ∖ {0})((invr‘ℂfld)‘𝑥) ∈ Constr))
503, 36, 46, 49syl3anbrc 1344 . 2 (⊤ → Constr ∈ (SubDRing‘ℂfld))
5150mptru 1548 1 Constr ∈ (SubDRing‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wral 3047  cdif 3894  wss 3897  c0 4278  {csn 4571  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  -cneg 11340   / cdiv 11769  Grpcgrp 18841  invgcminusg 18842  SubGrpcsubg 19028  Ringcrg 20146  invrcinvr 20300  SubRingcsubrg 20479  DivRingcdr 20639  Fieldcfield 20640  SubDRingcsdrg 20696  fldccnfld 21286  Constrcconstr 33734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-subrng 20456  df-subrg 20480  df-drng 20641  df-field 20642  df-sdrg 20697  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-constr 33735
This theorem is referenced by:  constrfld  33781
  Copyright terms: Public domain W3C validator