Step | Hyp | Ref
| Expression |
1 | | oveq1 7455 |
. . . . . . 7
⊢ (𝑚 = 0s → (𝑚 +s 1s ) =
( 0s +s 1s )) |
2 | | 1sno 27890 |
. . . . . . . 8
⊢
1s ∈ No |
3 | | addslid 28019 |
. . . . . . . 8
⊢ (
1s ∈ No → ( 0s
+s 1s ) = 1s ) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ (
0s +s 1s ) = 1s |
5 | 1, 4 | eqtrdi 2796 |
. . . . . 6
⊢ (𝑚 = 0s → (𝑚 +s 1s ) =
1s ) |
6 | 5 | oveq2d 7464 |
. . . . 5
⊢ (𝑚 = 0s →
(2s↑s(𝑚 +s 1s )) =
(2s↑s 1s )) |
7 | | 2sno 28421 |
. . . . . 6
⊢
2s ∈ No |
8 | | exps1 28429 |
. . . . . 6
⊢
(2s ∈ No →
(2s↑s 1s ) =
2s) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢
(2s↑s 1s ) =
2s |
10 | 6, 9 | eqtrdi 2796 |
. . . 4
⊢ (𝑚 = 0s →
(2s↑s(𝑚 +s 1s )) =
2s) |
11 | 10 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 0s → (
1s /su (2s↑s(𝑚 +s 1s )))
= ( 1s /su 2s)) |
12 | | oveq2 7456 |
. . . . . . . 8
⊢ (𝑚 = 0s →
(2s↑s𝑚) = (2s↑s
0s )) |
13 | | exps0 28428 |
. . . . . . . . 9
⊢
(2s ∈ No →
(2s↑s 0s ) = 1s
) |
14 | 7, 13 | ax-mp 5 |
. . . . . . . 8
⊢
(2s↑s 0s ) =
1s |
15 | 12, 14 | eqtrdi 2796 |
. . . . . . 7
⊢ (𝑚 = 0s →
(2s↑s𝑚) = 1s ) |
16 | 15 | oveq2d 7464 |
. . . . . 6
⊢ (𝑚 = 0s → (
1s /su (2s↑s𝑚)) = ( 1s
/su 1s )) |
17 | | divs1 28247 |
. . . . . . 7
⊢ (
1s ∈ No → ( 1s
/su 1s ) = 1s ) |
18 | 2, 17 | ax-mp 5 |
. . . . . 6
⊢ (
1s /su 1s ) =
1s |
19 | 16, 18 | eqtrdi 2796 |
. . . . 5
⊢ (𝑚 = 0s → (
1s /su (2s↑s𝑚)) = 1s
) |
20 | 19 | sneqd 4660 |
. . . 4
⊢ (𝑚 = 0s → {(
1s /su (2s↑s𝑚))} = { 1s
}) |
21 | 20 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 0s → ({
0s } |s {( 1s /su
(2s↑s𝑚))}) = ({ 0s } |s { 1s
})) |
22 | 11, 21 | eqeq12d 2756 |
. 2
⊢ (𝑚 = 0s → ((
1s /su (2s↑s(𝑚 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑚))}) ↔ ( 1s
/su 2s) = ({ 0s } |s { 1s
}))) |
23 | | oveq1 7455 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑚 +s 1s ) = (𝑛 +s 1s
)) |
24 | 23 | oveq2d 7464 |
. . . 4
⊢ (𝑚 = 𝑛 →
(2s↑s(𝑚 +s 1s )) =
(2s↑s(𝑛 +s 1s
))) |
25 | 24 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 𝑛 → ( 1s /su
(2s↑s(𝑚 +s 1s ))) = (
1s /su (2s↑s(𝑛 +s 1s
)))) |
26 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (2s↑s𝑚) =
(2s↑s𝑛)) |
27 | 26 | oveq2d 7464 |
. . . . 5
⊢ (𝑚 = 𝑛 → ( 1s /su
(2s↑s𝑚)) = ( 1s /su
(2s↑s𝑛))) |
28 | 27 | sneqd 4660 |
. . . 4
⊢ (𝑚 = 𝑛 → {( 1s /su
(2s↑s𝑚))} = {( 1s /su
(2s↑s𝑛))}) |
29 | 28 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 𝑛 → ({ 0s } |s {(
1s /su (2s↑s𝑚))}) = ({ 0s } |s {(
1s /su (2s↑s𝑛))})) |
30 | 25, 29 | eqeq12d 2756 |
. 2
⊢ (𝑚 = 𝑛 → (( 1s /su
(2s↑s(𝑚 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑚))}) ↔ ( 1s
/su (2s↑s(𝑛 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑛))}))) |
31 | | oveq1 7455 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) → (𝑚 +s 1s ) =
((𝑛 +s
1s ) +s 1s )) |
32 | 31 | oveq2d 7464 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) →
(2s↑s(𝑚 +s 1s )) =
(2s↑s((𝑛 +s 1s ) +s
1s ))) |
33 | 32 | oveq2d 7464 |
. . 3
⊢ (𝑚 = (𝑛 +s 1s ) → (
1s /su (2s↑s(𝑚 +s 1s )))
= ( 1s /su (2s↑s((𝑛 +s 1s )
+s 1s )))) |
34 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) →
(2s↑s𝑚) = (2s↑s(𝑛 +s 1s
))) |
35 | 34 | oveq2d 7464 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) → (
1s /su (2s↑s𝑚)) = ( 1s
/su (2s↑s(𝑛 +s 1s
)))) |
36 | 35 | sneqd 4660 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) → {(
1s /su (2s↑s𝑚))} = {( 1s
/su (2s↑s(𝑛 +s 1s
)))}) |
37 | 36 | oveq2d 7464 |
. . 3
⊢ (𝑚 = (𝑛 +s 1s ) → ({
0s } |s {( 1s /su
(2s↑s𝑚))}) = ({ 0s } |s {( 1s
/su (2s↑s(𝑛 +s 1s
)))})) |
38 | 33, 37 | eqeq12d 2756 |
. 2
⊢ (𝑚 = (𝑛 +s 1s ) → ((
1s /su (2s↑s(𝑚 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑚))}) ↔ ( 1s
/su (2s↑s((𝑛 +s 1s ) +s
1s ))) = ({ 0s } |s {( 1s /su
(2s↑s(𝑛 +s 1s
)))}))) |
39 | | oveq1 7455 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝑚 +s 1s ) = (𝑁 +s 1s
)) |
40 | 39 | oveq2d 7464 |
. . . 4
⊢ (𝑚 = 𝑁 →
(2s↑s(𝑚 +s 1s )) =
(2s↑s(𝑁 +s 1s
))) |
41 | 40 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 𝑁 → ( 1s /su
(2s↑s(𝑚 +s 1s ))) = (
1s /su (2s↑s(𝑁 +s 1s
)))) |
42 | | oveq2 7456 |
. . . . . 6
⊢ (𝑚 = 𝑁 →
(2s↑s𝑚) = (2s↑s𝑁)) |
43 | 42 | oveq2d 7464 |
. . . . 5
⊢ (𝑚 = 𝑁 → ( 1s /su
(2s↑s𝑚)) = ( 1s /su
(2s↑s𝑁))) |
44 | 43 | sneqd 4660 |
. . . 4
⊢ (𝑚 = 𝑁 → {( 1s /su
(2s↑s𝑚))} = {( 1s /su
(2s↑s𝑁))}) |
45 | 44 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 𝑁 → ({ 0s } |s {(
1s /su (2s↑s𝑚))}) = ({ 0s } |s {(
1s /su (2s↑s𝑁))})) |
46 | 41, 45 | eqeq12d 2756 |
. 2
⊢ (𝑚 = 𝑁 → (( 1s /su
(2s↑s(𝑚 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑚))}) ↔ ( 1s
/su (2s↑s(𝑁 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑁))}))) |
47 | | nohalf 28425 |
. 2
⊢ (
1s /su 2s) = ({ 0s } |s {
1s }) |
48 | | peano2n0s 28353 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ (𝑛 +s
1s ) ∈ ℕ0s) |
49 | | expsp1 28430 |
. . . . . . . . . 10
⊢
((2s ∈ No ∧ (𝑛 +s 1s )
∈ ℕ0s) → (2s↑s((𝑛 +s 1s )
+s 1s )) = ((2s↑s(𝑛 +s 1s ))
·s 2s)) |
50 | 7, 49 | mpan 689 |
. . . . . . . . 9
⊢ ((𝑛 +s 1s )
∈ ℕ0s → (2s↑s((𝑛 +s 1s )
+s 1s )) = ((2s↑s(𝑛 +s 1s ))
·s 2s)) |
51 | 48, 50 | syl 17 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s((𝑛 +s 1s ) +s
1s )) = ((2s↑s(𝑛 +s 1s ))
·s 2s)) |
52 | 51 | oveq2d 7464 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s((𝑛 +s 1s ) +s
1s ))) = ( 1s /su
((2s↑s(𝑛 +s 1s ))
·s 2s))) |
53 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 1s ∈ No ) |
54 | | expscl 28431 |
. . . . . . . . . 10
⊢
((2s ∈ No ∧ (𝑛 +s 1s )
∈ ℕ0s) → (2s↑s(𝑛 +s 1s ))
∈ No ) |
55 | 7, 54 | mpan 689 |
. . . . . . . . 9
⊢ ((𝑛 +s 1s )
∈ ℕ0s → (2s↑s(𝑛 +s 1s ))
∈ No ) |
56 | 48, 55 | syl 17 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s(𝑛 +s 1s )) ∈ No ) |
57 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 2s ∈ No ) |
58 | | 2ne0s 28422 |
. . . . . . . . . 10
⊢
2s ≠ 0s |
59 | | expsne0 28432 |
. . . . . . . . . 10
⊢
((2s ∈ No ∧
2s ≠ 0s ∧ (𝑛 +s 1s ) ∈
ℕ0s) → (2s↑s(𝑛 +s 1s ))
≠ 0s ) |
60 | 7, 58, 59 | mp3an12 1451 |
. . . . . . . . 9
⊢ ((𝑛 +s 1s )
∈ ℕ0s → (2s↑s(𝑛 +s 1s ))
≠ 0s ) |
61 | 48, 60 | syl 17 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s(𝑛 +s 1s )) ≠
0s ) |
62 | 58 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 2s ≠ 0s ) |
63 | 53, 56, 57, 61, 62 | divdivs1d 28275 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ (( 1s /su
(2s↑s(𝑛 +s 1s )))
/su 2s) = ( 1s /su
((2s↑s(𝑛 +s 1s ))
·s 2s))) |
64 | 52, 63 | eqtr4d 2783 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s((𝑛 +s 1s ) +s
1s ))) = (( 1s /su
(2s↑s(𝑛 +s 1s )))
/su 2s)) |
65 | 53, 56, 61 | divscld 28266 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s(𝑛 +s 1s ))) ∈ No ) |
66 | | addslid 28019 |
. . . . . . . 8
⊢ ((
1s /su (2s↑s(𝑛 +s 1s )))
∈ No → ( 0s +s (
1s /su (2s↑s(𝑛 +s 1s
)))) = ( 1s /su
(2s↑s(𝑛 +s 1s
)))) |
67 | 65, 66 | syl 17 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ ( 0s +s ( 1s /su
(2s↑s(𝑛 +s 1s )))) = (
1s /su (2s↑s(𝑛 +s 1s
)))) |
68 | 67 | oveq1d 7463 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0s
→ (( 0s +s ( 1s /su
(2s↑s(𝑛 +s 1s ))))
/su 2s) = (( 1s /su
(2s↑s(𝑛 +s 1s )))
/su 2s)) |
69 | 64, 68 | eqtr4d 2783 |
. . . . 5
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s((𝑛 +s 1s ) +s
1s ))) = (( 0s +s ( 1s
/su (2s↑s(𝑛 +s 1s ))))
/su 2s)) |
70 | 69 | adantr 480 |
. . . 4
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ( 1s
/su (2s↑s((𝑛 +s 1s ) +s
1s ))) = (( 0s +s ( 1s
/su (2s↑s(𝑛 +s 1s ))))
/su 2s)) |
71 | | 0sno 27889 |
. . . . . 6
⊢
0s ∈ No |
72 | 71 | a1i 11 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → 0s ∈ No ) |
73 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → 1s ∈ No ) |
74 | 56 | adantr 480 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) →
(2s↑s(𝑛 +s 1s )) ∈ No ) |
75 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) →
(2s↑s(𝑛 +s 1s )) ≠
0s ) |
76 | 73, 74, 75 | divscld 28266 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ( 1s
/su (2s↑s(𝑛 +s 1s ))) ∈ No ) |
77 | | muls02 28185 |
. . . . . . . 8
⊢
((2s↑s(𝑛 +s 1s )) ∈ No → ( 0s ·s
(2s↑s(𝑛 +s 1s ))) =
0s ) |
78 | 74, 77 | syl 17 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ( 0s
·s (2s↑s(𝑛 +s 1s ))) =
0s ) |
79 | | 0slt1s 27892 |
. . . . . . 7
⊢
0s <s 1s |
80 | 78, 79 | eqbrtrdi 5205 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ( 0s
·s (2s↑s(𝑛 +s 1s ))) <s
1s ) |
81 | | 2nns 28420 |
. . . . . . . . . . 11
⊢
2s ∈ ℕs |
82 | | nnsgt0 28360 |
. . . . . . . . . . 11
⊢
(2s ∈ ℕs → 0s <s
2s) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . . . 10
⊢
0s <s 2s |
84 | | expsgt0 28433 |
. . . . . . . . . 10
⊢
((2s ∈ No ∧ (𝑛 +s 1s )
∈ ℕ0s ∧ 0s <s 2s) →
0s <s (2s↑s(𝑛 +s 1s
))) |
85 | 7, 83, 84 | mp3an13 1452 |
. . . . . . . . 9
⊢ ((𝑛 +s 1s )
∈ ℕ0s → 0s <s
(2s↑s(𝑛 +s 1s
))) |
86 | 48, 85 | syl 17 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 0s <s (2s↑s(𝑛 +s 1s
))) |
87 | 86 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → 0s <s
(2s↑s(𝑛 +s 1s
))) |
88 | 72, 73, 74, 87 | sltmuldivd 28271 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → (( 0s
·s (2s↑s(𝑛 +s 1s ))) <s
1s ↔ 0s <s ( 1s /su
(2s↑s(𝑛 +s 1s
))))) |
89 | 80, 88 | mpbid 232 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → 0s <s (
1s /su (2s↑s(𝑛 +s 1s
)))) |
90 | | muls01 28156 |
. . . . . . . . . . 11
⊢
(2s ∈ No →
(2s ·s 0s ) = 0s
) |
91 | 7, 90 | ax-mp 5 |
. . . . . . . . . 10
⊢
(2s ·s 0s ) =
0s |
92 | 91 | sneqi 4659 |
. . . . . . . . 9
⊢
{(2s ·s 0s )} = { 0s
} |
93 | 92 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ {(2s ·s 0s )} = { 0s
}) |
94 | | expsp1 28430 |
. . . . . . . . . . . . . 14
⊢
((2s ∈ No ∧ 𝑛 ∈ ℕ0s)
→ (2s↑s(𝑛 +s 1s )) =
((2s↑s𝑛) ·s
2s)) |
95 | 7, 94 | mpan 689 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s(𝑛 +s 1s )) =
((2s↑s𝑛) ·s
2s)) |
96 | 95 | oveq2d 7464 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s(𝑛 +s 1s ))) = (
1s /su ((2s↑s𝑛) ·s
2s))) |
97 | | expscl 28431 |
. . . . . . . . . . . . . 14
⊢
((2s ∈ No ∧ 𝑛 ∈ ℕ0s)
→ (2s↑s𝑛) ∈ No
) |
98 | 7, 97 | mpan 689 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s𝑛) ∈ No
) |
99 | | expsne0 28432 |
. . . . . . . . . . . . . 14
⊢
((2s ∈ No ∧
2s ≠ 0s ∧ 𝑛 ∈ ℕ0s) →
(2s↑s𝑛) ≠ 0s ) |
100 | 7, 58, 99 | mp3an12 1451 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s𝑛) ≠ 0s ) |
101 | 53, 98, 57, 100, 62 | divdivs1d 28275 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0s
→ (( 1s /su
(2s↑s𝑛)) /su 2s) = (
1s /su ((2s↑s𝑛) ·s
2s))) |
102 | 96, 101 | eqtr4d 2783 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s(𝑛 +s 1s ))) = ((
1s /su (2s↑s𝑛)) /su
2s)) |
103 | 102 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ (2s ·s ( 1s /su
(2s↑s(𝑛 +s 1s )))) =
(2s ·s (( 1s /su
(2s↑s𝑛)) /su
2s))) |
104 | 53, 98, 100 | divscld 28266 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su (2s↑s𝑛)) ∈
No ) |
105 | 104, 57, 62 | divscan2d 28267 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ (2s ·s (( 1s /su
(2s↑s𝑛)) /su 2s)) = (
1s /su (2s↑s𝑛))) |
106 | 103, 105 | eqtrd 2780 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ (2s ·s ( 1s /su
(2s↑s(𝑛 +s 1s )))) = (
1s /su (2s↑s𝑛))) |
107 | 106 | sneqd 4660 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ {(2s ·s ( 1s /su
(2s↑s(𝑛 +s 1s ))))} = {(
1s /su (2s↑s𝑛))}) |
108 | 93, 107 | oveq12d 7466 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ ({(2s ·s 0s )} |s
{(2s ·s ( 1s /su
(2s↑s(𝑛 +s 1s ))))}) = ({
0s } |s {( 1s /su
(2s↑s𝑛))})) |
109 | | eqcom 2747 |
. . . . . . . 8
⊢ ((
1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))}) ↔ ({ 0s } |s {(
1s /su (2s↑s𝑛))}) = ( 1s
/su (2s↑s(𝑛 +s 1s
)))) |
110 | 109 | biimpi 216 |
. . . . . . 7
⊢ ((
1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))}) → ({ 0s } |s {(
1s /su (2s↑s𝑛))}) = ( 1s
/su (2s↑s(𝑛 +s 1s
)))) |
111 | 108, 110 | sylan9eq 2800 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ({(2s
·s 0s )} |s {(2s ·s (
1s /su (2s↑s(𝑛 +s 1s
))))}) = ( 1s /su
(2s↑s(𝑛 +s 1s
)))) |
112 | 76, 66 | syl 17 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ( 0s +s (
1s /su (2s↑s(𝑛 +s 1s
)))) = ( 1s /su
(2s↑s(𝑛 +s 1s
)))) |
113 | 111, 112 | eqtr4d 2783 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ({(2s
·s 0s )} |s {(2s ·s (
1s /su (2s↑s(𝑛 +s 1s
))))}) = ( 0s +s ( 1s /su
(2s↑s(𝑛 +s 1s
))))) |
114 | | eqid 2740 |
. . . . 5
⊢ ({
0s } |s {( 1s /su
(2s↑s(𝑛 +s 1s )))}) = ({
0s } |s {( 1s /su
(2s↑s(𝑛 +s 1s
)))}) |
115 | 72, 76, 89, 113, 114 | halfcut 28434 |
. . . 4
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ({ 0s } |s {(
1s /su (2s↑s(𝑛 +s 1s
)))}) = (( 0s +s ( 1s /su
(2s↑s(𝑛 +s 1s ))))
/su 2s)) |
116 | 70, 115 | eqtr4d 2783 |
. . 3
⊢ ((𝑛 ∈ ℕ0s
∧ ( 1s /su (2s↑s(𝑛 +s 1s )))
= ({ 0s } |s {( 1s /su
(2s↑s𝑛))})) → ( 1s
/su (2s↑s((𝑛 +s 1s ) +s
1s ))) = ({ 0s } |s {( 1s /su
(2s↑s(𝑛 +s 1s
)))})) |
117 | 116 | ex 412 |
. 2
⊢ (𝑛 ∈ ℕ0s
→ (( 1s /su
(2s↑s(𝑛 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑛))}) → ( 1s
/su (2s↑s((𝑛 +s 1s ) +s
1s ))) = ({ 0s } |s {( 1s /su
(2s↑s(𝑛 +s 1s
)))}))) |
118 | 22, 30, 38, 46, 47, 117 | n0sind 28355 |
1
⊢ (𝑁 ∈ ℕ0s
→ ( 1s /su
(2s↑s(𝑁 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑁))})) |