MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cutpw2 Structured version   Visualization version   GIF version

Theorem cutpw2 28435
Description: A cut expression for inverses of powers of two. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
cutpw2 (𝑁 ∈ ℕ0s → ( 1s /su (2ss(𝑁 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑁))}))

Proof of Theorem cutpw2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . . 7 (𝑚 = 0s → (𝑚 +s 1s ) = ( 0s +s 1s ))
2 1sno 27890 . . . . . . . 8 1s No
3 addslid 28019 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
42, 3ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
51, 4eqtrdi 2796 . . . . . 6 (𝑚 = 0s → (𝑚 +s 1s ) = 1s )
65oveq2d 7464 . . . . 5 (𝑚 = 0s → (2ss(𝑚 +s 1s )) = (2ss 1s ))
7 2sno 28421 . . . . . 6 2s No
8 exps1 28429 . . . . . 6 (2s No → (2ss 1s ) = 2s)
97, 8ax-mp 5 . . . . 5 (2ss 1s ) = 2s
106, 9eqtrdi 2796 . . . 4 (𝑚 = 0s → (2ss(𝑚 +s 1s )) = 2s)
1110oveq2d 7464 . . 3 (𝑚 = 0s → ( 1s /su (2ss(𝑚 +s 1s ))) = ( 1s /su 2s))
12 oveq2 7456 . . . . . . . 8 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
13 exps0 28428 . . . . . . . . 9 (2s No → (2ss 0s ) = 1s )
147, 13ax-mp 5 . . . . . . . 8 (2ss 0s ) = 1s
1512, 14eqtrdi 2796 . . . . . . 7 (𝑚 = 0s → (2ss𝑚) = 1s )
1615oveq2d 7464 . . . . . 6 (𝑚 = 0s → ( 1s /su (2ss𝑚)) = ( 1s /su 1s ))
17 divs1 28247 . . . . . . 7 ( 1s No → ( 1s /su 1s ) = 1s )
182, 17ax-mp 5 . . . . . 6 ( 1s /su 1s ) = 1s
1916, 18eqtrdi 2796 . . . . 5 (𝑚 = 0s → ( 1s /su (2ss𝑚)) = 1s )
2019sneqd 4660 . . . 4 (𝑚 = 0s → {( 1s /su (2ss𝑚))} = { 1s })
2120oveq2d 7464 . . 3 (𝑚 = 0s → ({ 0s } |s {( 1s /su (2ss𝑚))}) = ({ 0s } |s { 1s }))
2211, 21eqeq12d 2756 . 2 (𝑚 = 0s → (( 1s /su (2ss(𝑚 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑚))}) ↔ ( 1s /su 2s) = ({ 0s } |s { 1s })))
23 oveq1 7455 . . . . 5 (𝑚 = 𝑛 → (𝑚 +s 1s ) = (𝑛 +s 1s ))
2423oveq2d 7464 . . . 4 (𝑚 = 𝑛 → (2ss(𝑚 +s 1s )) = (2ss(𝑛 +s 1s )))
2524oveq2d 7464 . . 3 (𝑚 = 𝑛 → ( 1s /su (2ss(𝑚 +s 1s ))) = ( 1s /su (2ss(𝑛 +s 1s ))))
26 oveq2 7456 . . . . . 6 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
2726oveq2d 7464 . . . . 5 (𝑚 = 𝑛 → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss𝑛)))
2827sneqd 4660 . . . 4 (𝑚 = 𝑛 → {( 1s /su (2ss𝑚))} = {( 1s /su (2ss𝑛))})
2928oveq2d 7464 . . 3 (𝑚 = 𝑛 → ({ 0s } |s {( 1s /su (2ss𝑚))}) = ({ 0s } |s {( 1s /su (2ss𝑛))}))
3025, 29eqeq12d 2756 . 2 (𝑚 = 𝑛 → (( 1s /su (2ss(𝑚 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑚))}) ↔ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})))
31 oveq1 7455 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 +s 1s ) = ((𝑛 +s 1s ) +s 1s ))
3231oveq2d 7464 . . . 4 (𝑚 = (𝑛 +s 1s ) → (2ss(𝑚 +s 1s )) = (2ss((𝑛 +s 1s ) +s 1s )))
3332oveq2d 7464 . . 3 (𝑚 = (𝑛 +s 1s ) → ( 1s /su (2ss(𝑚 +s 1s ))) = ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))))
34 oveq2 7456 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
3534oveq2d 7464 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss(𝑛 +s 1s ))))
3635sneqd 4660 . . . 4 (𝑚 = (𝑛 +s 1s ) → {( 1s /su (2ss𝑚))} = {( 1s /su (2ss(𝑛 +s 1s )))})
3736oveq2d 7464 . . 3 (𝑚 = (𝑛 +s 1s ) → ({ 0s } |s {( 1s /su (2ss𝑚))}) = ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))}))
3833, 37eqeq12d 2756 . 2 (𝑚 = (𝑛 +s 1s ) → (( 1s /su (2ss(𝑚 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑚))}) ↔ ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))})))
39 oveq1 7455 . . . . 5 (𝑚 = 𝑁 → (𝑚 +s 1s ) = (𝑁 +s 1s ))
4039oveq2d 7464 . . . 4 (𝑚 = 𝑁 → (2ss(𝑚 +s 1s )) = (2ss(𝑁 +s 1s )))
4140oveq2d 7464 . . 3 (𝑚 = 𝑁 → ( 1s /su (2ss(𝑚 +s 1s ))) = ( 1s /su (2ss(𝑁 +s 1s ))))
42 oveq2 7456 . . . . . 6 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
4342oveq2d 7464 . . . . 5 (𝑚 = 𝑁 → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss𝑁)))
4443sneqd 4660 . . . 4 (𝑚 = 𝑁 → {( 1s /su (2ss𝑚))} = {( 1s /su (2ss𝑁))})
4544oveq2d 7464 . . 3 (𝑚 = 𝑁 → ({ 0s } |s {( 1s /su (2ss𝑚))}) = ({ 0s } |s {( 1s /su (2ss𝑁))}))
4641, 45eqeq12d 2756 . 2 (𝑚 = 𝑁 → (( 1s /su (2ss(𝑚 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑚))}) ↔ ( 1s /su (2ss(𝑁 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑁))})))
47 nohalf 28425 . 2 ( 1s /su 2s) = ({ 0s } |s { 1s })
48 peano2n0s 28353 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) ∈ ℕ0s)
49 expsp1 28430 . . . . . . . . . 10 ((2s No ∧ (𝑛 +s 1s ) ∈ ℕ0s) → (2ss((𝑛 +s 1s ) +s 1s )) = ((2ss(𝑛 +s 1s )) ·s 2s))
507, 49mpan 689 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → (2ss((𝑛 +s 1s ) +s 1s )) = ((2ss(𝑛 +s 1s )) ·s 2s))
5148, 50syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → (2ss((𝑛 +s 1s ) +s 1s )) = ((2ss(𝑛 +s 1s )) ·s 2s))
5251oveq2d 7464 . . . . . . 7 (𝑛 ∈ ℕ0s → ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = ( 1s /su ((2ss(𝑛 +s 1s )) ·s 2s)))
532a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0s → 1s No )
54 expscl 28431 . . . . . . . . . 10 ((2s No ∧ (𝑛 +s 1s ) ∈ ℕ0s) → (2ss(𝑛 +s 1s )) ∈ No )
557, 54mpan 689 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → (2ss(𝑛 +s 1s )) ∈ No )
5648, 55syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) ∈ No )
577a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0s → 2s No )
58 2ne0s 28422 . . . . . . . . . 10 2s ≠ 0s
59 expsne0 28432 . . . . . . . . . 10 ((2s No ∧ 2s ≠ 0s ∧ (𝑛 +s 1s ) ∈ ℕ0s) → (2ss(𝑛 +s 1s )) ≠ 0s )
607, 58, 59mp3an12 1451 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → (2ss(𝑛 +s 1s )) ≠ 0s )
6148, 60syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) ≠ 0s )
6258a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0s → 2s ≠ 0s )
6353, 56, 57, 61, 62divdivs1d 28275 . . . . . . 7 (𝑛 ∈ ℕ0s → (( 1s /su (2ss(𝑛 +s 1s ))) /su 2s) = ( 1s /su ((2ss(𝑛 +s 1s )) ·s 2s)))
6452, 63eqtr4d 2783 . . . . . 6 (𝑛 ∈ ℕ0s → ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = (( 1s /su (2ss(𝑛 +s 1s ))) /su 2s))
6553, 56, 61divscld 28266 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( 1s /su (2ss(𝑛 +s 1s ))) ∈ No )
66 addslid 28019 . . . . . . . 8 (( 1s /su (2ss(𝑛 +s 1s ))) ∈ No → ( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) = ( 1s /su (2ss(𝑛 +s 1s ))))
6765, 66syl 17 . . . . . . 7 (𝑛 ∈ ℕ0s → ( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) = ( 1s /su (2ss(𝑛 +s 1s ))))
6867oveq1d 7463 . . . . . 6 (𝑛 ∈ ℕ0s → (( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) /su 2s) = (( 1s /su (2ss(𝑛 +s 1s ))) /su 2s))
6964, 68eqtr4d 2783 . . . . 5 (𝑛 ∈ ℕ0s → ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = (( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) /su 2s))
7069adantr 480 . . . 4 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = (( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) /su 2s))
71 0sno 27889 . . . . . 6 0s No
7271a1i 11 . . . . 5 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → 0s No )
732a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → 1s No )
7456adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → (2ss(𝑛 +s 1s )) ∈ No )
7561adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → (2ss(𝑛 +s 1s )) ≠ 0s )
7673, 74, 75divscld 28266 . . . . 5 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ( 1s /su (2ss(𝑛 +s 1s ))) ∈ No )
77 muls02 28185 . . . . . . . 8 ((2ss(𝑛 +s 1s )) ∈ No → ( 0s ·s (2ss(𝑛 +s 1s ))) = 0s )
7874, 77syl 17 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ( 0s ·s (2ss(𝑛 +s 1s ))) = 0s )
79 0slt1s 27892 . . . . . . 7 0s <s 1s
8078, 79eqbrtrdi 5205 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ( 0s ·s (2ss(𝑛 +s 1s ))) <s 1s )
81 2nns 28420 . . . . . . . . . . 11 2s ∈ ℕs
82 nnsgt0 28360 . . . . . . . . . . 11 (2s ∈ ℕs → 0s <s 2s)
8381, 82ax-mp 5 . . . . . . . . . 10 0s <s 2s
84 expsgt0 28433 . . . . . . . . . 10 ((2s No ∧ (𝑛 +s 1s ) ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss(𝑛 +s 1s )))
857, 83, 84mp3an13 1452 . . . . . . . . 9 ((𝑛 +s 1s ) ∈ ℕ0s → 0s <s (2ss(𝑛 +s 1s )))
8648, 85syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0s → 0s <s (2ss(𝑛 +s 1s )))
8786adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → 0s <s (2ss(𝑛 +s 1s )))
8872, 73, 74, 87sltmuldivd 28271 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → (( 0s ·s (2ss(𝑛 +s 1s ))) <s 1s ↔ 0s <s ( 1s /su (2ss(𝑛 +s 1s )))))
8980, 88mpbid 232 . . . . 5 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → 0s <s ( 1s /su (2ss(𝑛 +s 1s ))))
90 muls01 28156 . . . . . . . . . . 11 (2s No → (2s ·s 0s ) = 0s )
917, 90ax-mp 5 . . . . . . . . . 10 (2s ·s 0s ) = 0s
9291sneqi 4659 . . . . . . . . 9 {(2s ·s 0s )} = { 0s }
9392a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0s → {(2s ·s 0s )} = { 0s })
94 expsp1 28430 . . . . . . . . . . . . . 14 ((2s No 𝑛 ∈ ℕ0s) → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
957, 94mpan 689 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0s → (2ss(𝑛 +s 1s )) = ((2ss𝑛) ·s 2s))
9695oveq2d 7464 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0s → ( 1s /su (2ss(𝑛 +s 1s ))) = ( 1s /su ((2ss𝑛) ·s 2s)))
97 expscl 28431 . . . . . . . . . . . . . 14 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
987, 97mpan 689 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
99 expsne0 28432 . . . . . . . . . . . . . 14 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
1007, 58, 99mp3an12 1451 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
10153, 98, 57, 100, 62divdivs1d 28275 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0s → (( 1s /su (2ss𝑛)) /su 2s) = ( 1s /su ((2ss𝑛) ·s 2s)))
10296, 101eqtr4d 2783 . . . . . . . . . . 11 (𝑛 ∈ ℕ0s → ( 1s /su (2ss(𝑛 +s 1s ))) = (( 1s /su (2ss𝑛)) /su 2s))
103102oveq2d 7464 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → (2s ·s ( 1s /su (2ss(𝑛 +s 1s )))) = (2s ·s (( 1s /su (2ss𝑛)) /su 2s)))
10453, 98, 100divscld 28266 . . . . . . . . . . 11 (𝑛 ∈ ℕ0s → ( 1s /su (2ss𝑛)) ∈ No )
105104, 57, 62divscan2d 28267 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → (2s ·s (( 1s /su (2ss𝑛)) /su 2s)) = ( 1s /su (2ss𝑛)))
106103, 105eqtrd 2780 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (2s ·s ( 1s /su (2ss(𝑛 +s 1s )))) = ( 1s /su (2ss𝑛)))
107106sneqd 4660 . . . . . . . 8 (𝑛 ∈ ℕ0s → {(2s ·s ( 1s /su (2ss(𝑛 +s 1s ))))} = {( 1s /su (2ss𝑛))})
10893, 107oveq12d 7466 . . . . . . 7 (𝑛 ∈ ℕ0s → ({(2s ·s 0s )} |s {(2s ·s ( 1s /su (2ss(𝑛 +s 1s ))))}) = ({ 0s } |s {( 1s /su (2ss𝑛))}))
109 eqcom 2747 . . . . . . . 8 (( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))}) ↔ ({ 0s } |s {( 1s /su (2ss𝑛))}) = ( 1s /su (2ss(𝑛 +s 1s ))))
110109biimpi 216 . . . . . . 7 (( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))}) → ({ 0s } |s {( 1s /su (2ss𝑛))}) = ( 1s /su (2ss(𝑛 +s 1s ))))
111108, 110sylan9eq 2800 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ({(2s ·s 0s )} |s {(2s ·s ( 1s /su (2ss(𝑛 +s 1s ))))}) = ( 1s /su (2ss(𝑛 +s 1s ))))
11276, 66syl 17 . . . . . 6 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) = ( 1s /su (2ss(𝑛 +s 1s ))))
113111, 112eqtr4d 2783 . . . . 5 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ({(2s ·s 0s )} |s {(2s ·s ( 1s /su (2ss(𝑛 +s 1s ))))}) = ( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))))
114 eqid 2740 . . . . 5 ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))}) = ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))})
11572, 76, 89, 113, 114halfcut 28434 . . . 4 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))}) = (( 0s +s ( 1s /su (2ss(𝑛 +s 1s )))) /su 2s))
11670, 115eqtr4d 2783 . . 3 ((𝑛 ∈ ℕ0s ∧ ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))})) → ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))}))
117116ex 412 . 2 (𝑛 ∈ ℕ0s → (( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))}) → ( 1s /su (2ss((𝑛 +s 1s ) +s 1s ))) = ({ 0s } |s {( 1s /su (2ss(𝑛 +s 1s )))})))
11822, 30, 38, 46, 47, 117n0sind 28355 1 (𝑁 ∈ ℕ0s → ( 1s /su (2ss(𝑁 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {csn 4648   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   |s cscut 27845   0s c0s 27885   1s c1s 27886   +s cadds 28010   ·s cmuls 28150   /su cdivs 28231  0scnn0s 28336  scnns 28337  2sc2s 28412  scexps 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232  df-seqs 28308  df-n0s 28338  df-nns 28339  df-zs 28383  df-2s 28413  df-exps 28415
This theorem is referenced by:  pw2bday  28436
  Copyright terms: Public domain W3C validator