MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2bday Structured version   Visualization version   GIF version

Theorem pw2bday 28433
Description: The inverses of powers of two have finite birthdays. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
pw2bday (𝑁 ∈ ℕ0s → ( bday ‘( 1s /su (2ss𝑁))) ∈ ω)

Proof of Theorem pw2bday
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . . 8 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
2 2sno 28418 . . . . . . . . 9 2s No
3 exps0 28425 . . . . . . . . 9 (2s No → (2ss 0s ) = 1s )
42, 3ax-mp 5 . . . . . . . 8 (2ss 0s ) = 1s
51, 4eqtrdi 2791 . . . . . . 7 (𝑚 = 0s → (2ss𝑚) = 1s )
65oveq2d 7447 . . . . . 6 (𝑚 = 0s → ( 1s /su (2ss𝑚)) = ( 1s /su 1s ))
7 1sno 27887 . . . . . . 7 1s No
8 divs1 28244 . . . . . . 7 ( 1s No → ( 1s /su 1s ) = 1s )
97, 8ax-mp 5 . . . . . 6 ( 1s /su 1s ) = 1s
106, 9eqtrdi 2791 . . . . 5 (𝑚 = 0s → ( 1s /su (2ss𝑚)) = 1s )
1110fveq2d 6911 . . . 4 (𝑚 = 0s → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘ 1s ))
12 bday1s 27891 . . . 4 ( bday ‘ 1s ) = 1o
1311, 12eqtrdi 2791 . . 3 (𝑚 = 0s → ( bday ‘( 1s /su (2ss𝑚))) = 1o)
1413eleq1d 2824 . 2 (𝑚 = 0s → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ 1o ∈ ω))
15 oveq2 7439 . . . . 5 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1615oveq2d 7447 . . . 4 (𝑚 = 𝑛 → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss𝑛)))
1716fveq2d 6911 . . 3 (𝑚 = 𝑛 → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘( 1s /su (2ss𝑛))))
1817eleq1d 2824 . 2 (𝑚 = 𝑛 → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ ( bday ‘( 1s /su (2ss𝑛))) ∈ ω))
19 oveq2 7439 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
2019oveq2d 7447 . . . 4 (𝑚 = (𝑛 +s 1s ) → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss(𝑛 +s 1s ))))
2120fveq2d 6911 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))))
2221eleq1d 2824 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω))
23 oveq2 7439 . . . . 5 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
2423oveq2d 7447 . . . 4 (𝑚 = 𝑁 → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss𝑁)))
2524fveq2d 6911 . . 3 (𝑚 = 𝑁 → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘( 1s /su (2ss𝑁))))
2625eleq1d 2824 . 2 (𝑚 = 𝑁 → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ ( bday ‘( 1s /su (2ss𝑁))) ∈ ω))
27 1onn 8677 . 2 1o ∈ ω
28 cutpw2 28432 . . . . . . 7 (𝑛 ∈ ℕ0s → ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))}))
2928fveq2d 6911 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) = ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})))
30 0sno 27886 . . . . . . . . 9 0s No
3130a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0s → 0s No )
327a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0s → 1s No )
33 expscl 28428 . . . . . . . . . 10 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
342, 33mpan 690 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
35 2ne0s 28419 . . . . . . . . . 10 2s ≠ 0s
36 expsne0 28429 . . . . . . . . . 10 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
372, 35, 36mp3an12 1450 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
3832, 34, 37divscld 28263 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( 1s /su (2ss𝑛)) ∈ No )
39 muls02 28182 . . . . . . . . . . 11 ((2ss𝑛) ∈ No → ( 0s ·s (2ss𝑛)) = 0s )
4034, 39syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → ( 0s ·s (2ss𝑛)) = 0s )
41 0slt1s 27889 . . . . . . . . . 10 0s <s 1s
4240, 41eqbrtrdi 5187 . . . . . . . . 9 (𝑛 ∈ ℕ0s → ( 0s ·s (2ss𝑛)) <s 1s )
43 2nns 28417 . . . . . . . . . . . 12 2s ∈ ℕs
44 nnsgt0 28357 . . . . . . . . . . . 12 (2s ∈ ℕs → 0s <s 2s)
4543, 44ax-mp 5 . . . . . . . . . . 11 0s <s 2s
46 expsgt0 28430 . . . . . . . . . . 11 ((2s No 𝑛 ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss𝑛))
472, 45, 46mp3an13 1451 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → 0s <s (2ss𝑛))
4831, 32, 34, 47sltmuldivd 28268 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (( 0s ·s (2ss𝑛)) <s 1s ↔ 0s <s ( 1s /su (2ss𝑛))))
4942, 48mpbid 232 . . . . . . . 8 (𝑛 ∈ ℕ0s → 0s <s ( 1s /su (2ss𝑛)))
5031, 38, 49ssltsn 27852 . . . . . . 7 (𝑛 ∈ ℕ0s → { 0s } <<s {( 1s /su (2ss𝑛))})
51 suc0 6461 . . . . . . . . . . . 12 suc ∅ = {∅}
52 bday0s 27888 . . . . . . . . . . . . 13 ( bday ‘ 0s ) = ∅
5352sneqi 4642 . . . . . . . . . . . 12 {( bday ‘ 0s )} = {∅}
54 bdayfn 27833 . . . . . . . . . . . . 13 bday Fn No
55 fnsnfv 6988 . . . . . . . . . . . . 13 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
5654, 30, 55mp2an 692 . . . . . . . . . . . 12 {( bday ‘ 0s )} = ( bday “ { 0s })
5751, 53, 563eqtr2i 2769 . . . . . . . . . . 11 suc ∅ = ( bday “ { 0s })
5857a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → suc ∅ = ( bday “ { 0s }))
59 fnsnfv 6988 . . . . . . . . . . . 12 (( bday Fn No ∧ ( 1s /su (2ss𝑛)) ∈ No ) → {( bday ‘( 1s /su (2ss𝑛)))} = ( bday “ {( 1s /su (2ss𝑛))}))
6054, 59mpan 690 . . . . . . . . . . 11 (( 1s /su (2ss𝑛)) ∈ No → {( bday ‘( 1s /su (2ss𝑛)))} = ( bday “ {( 1s /su (2ss𝑛))}))
6138, 60syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → {( bday ‘( 1s /su (2ss𝑛)))} = ( bday “ {( 1s /su (2ss𝑛))}))
6258, 61uneq12d 4179 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (suc ∅ ∪ {( bday ‘( 1s /su (2ss𝑛)))}) = (( bday “ { 0s }) ∪ ( bday “ {( 1s /su (2ss𝑛))})))
63 imaundi 6172 . . . . . . . . 9 ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) = (( bday “ { 0s }) ∪ ( bday “ {( 1s /su (2ss𝑛))}))
6462, 63eqtr4di 2793 . . . . . . . 8 (𝑛 ∈ ℕ0s → (suc ∅ ∪ {( bday ‘( 1s /su (2ss𝑛)))}) = ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})))
65 0ss 4406 . . . . . . . . . 10 ∅ ⊆ ( bday ‘( 1s /su (2ss𝑛)))
66 ord0 6439 . . . . . . . . . . 11 Ord ∅
67 bdayelon 27836 . . . . . . . . . . . 12 ( bday ‘( 1s /su (2ss𝑛))) ∈ On
6867onordi 6497 . . . . . . . . . . 11 Ord ( bday ‘( 1s /su (2ss𝑛)))
69 ordsucsssuc 7843 . . . . . . . . . . 11 ((Ord ∅ ∧ Ord ( bday ‘( 1s /su (2ss𝑛)))) → (∅ ⊆ ( bday ‘( 1s /su (2ss𝑛))) ↔ suc ∅ ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))))
7066, 68, 69mp2an 692 . . . . . . . . . 10 (∅ ⊆ ( bday ‘( 1s /su (2ss𝑛))) ↔ suc ∅ ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
7165, 70mpbi 230 . . . . . . . . 9 suc ∅ ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))
72 fvex 6920 . . . . . . . . . . 11 ( bday ‘( 1s /su (2ss𝑛))) ∈ V
7372sucid 6468 . . . . . . . . . 10 ( bday ‘( 1s /su (2ss𝑛))) ∈ suc ( bday ‘( 1s /su (2ss𝑛)))
74 snssi 4813 . . . . . . . . . 10 (( bday ‘( 1s /su (2ss𝑛))) ∈ suc ( bday ‘( 1s /su (2ss𝑛))) → {( bday ‘( 1s /su (2ss𝑛)))} ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
7573, 74ax-mp 5 . . . . . . . . 9 {( bday ‘( 1s /su (2ss𝑛)))} ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))
7671, 75unssi 4201 . . . . . . . 8 (suc ∅ ∪ {( bday ‘( 1s /su (2ss𝑛)))}) ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))
7764, 76eqsstrrdi 4051 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
7867onsuci 7859 . . . . . . . 8 suc ( bday ‘( 1s /su (2ss𝑛))) ∈ On
79 scutbdaybnd 27875 . . . . . . . 8 (({ 0s } <<s {( 1s /su (2ss𝑛))} ∧ suc ( bday ‘( 1s /su (2ss𝑛))) ∈ On ∧ ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))) → ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
8078, 79mp3an2 1448 . . . . . . 7 (({ 0s } <<s {( 1s /su (2ss𝑛))} ∧ ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))) → ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
8150, 77, 80syl2anc 584 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
8229, 81eqsstrd 4034 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
83 bdayelon 27836 . . . . . 6 ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ On
84 onsssuc 6476 . . . . . 6 ((( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ On ∧ suc ( bday ‘( 1s /su (2ss𝑛))) ∈ On) → (( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))) ↔ ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛)))))
8583, 78, 84mp2an 692 . . . . 5 (( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))) ↔ ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛))))
8682, 85sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛))))
87 peano2 7913 . . . . 5 (( bday ‘( 1s /su (2ss𝑛))) ∈ ω → suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω)
88 peano2 7913 . . . . 5 (suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω → suc suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω)
8987, 88syl 17 . . . 4 (( bday ‘( 1s /su (2ss𝑛))) ∈ ω → suc suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω)
90 elnn 7898 . . . 4 ((( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛))) ∧ suc suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω) → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω)
9186, 89, 90syl2an 596 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday ‘( 1s /su (2ss𝑛))) ∈ ω) → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω)
9291ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday ‘( 1s /su (2ss𝑛))) ∈ ω → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω))
9314, 18, 22, 26, 27, 92n0sind 28352 1 (𝑁 ∈ ℕ0s → ( bday ‘( 1s /su (2ss𝑁))) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wne 2938  cun 3961  wss 3963  c0 4339  {csn 4631   class class class wbr 5148  cima 5692  Ord word 6385  Oncon0 6386  suc csuc 6388   Fn wfn 6558  cfv 6563  (class class class)co 7431  ωcom 7887  1oc1o 8498   No csur 27699   <s cslt 27700   bday cbday 27701   <<s csslt 27840   |s cscut 27842   0s c0s 27882   1s c1s 27883   +s cadds 28007   ·s cmuls 28147   /su cdivs 28228  0scnn0s 28333  scnns 28334  2sc2s 28409  scexps 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-dc 10484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-divs 28229  df-seqs 28305  df-n0s 28335  df-nns 28336  df-zs 28380  df-2s 28410  df-exps 28412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator