Step | Hyp | Ref
| Expression |
1 | | oveq2 7456 |
. . . . . . . 8
⊢ (𝑚 = 0s →
(2s↑s𝑚) = (2s↑s
0s )) |
2 | | 2sno 28421 |
. . . . . . . . 9
⊢
2s ∈ No |
3 | | exps0 28428 |
. . . . . . . . 9
⊢
(2s ∈ No →
(2s↑s 0s ) = 1s
) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢
(2s↑s 0s ) =
1s |
5 | 1, 4 | eqtrdi 2796 |
. . . . . . 7
⊢ (𝑚 = 0s →
(2s↑s𝑚) = 1s ) |
6 | 5 | oveq2d 7464 |
. . . . . 6
⊢ (𝑚 = 0s → (
1s /su (2s↑s𝑚)) = ( 1s
/su 1s )) |
7 | | 1sno 27890 |
. . . . . . 7
⊢
1s ∈ No |
8 | | divs1 28247 |
. . . . . . 7
⊢ (
1s ∈ No → ( 1s
/su 1s ) = 1s ) |
9 | 7, 8 | ax-mp 5 |
. . . . . 6
⊢ (
1s /su 1s ) =
1s |
10 | 6, 9 | eqtrdi 2796 |
. . . . 5
⊢ (𝑚 = 0s → (
1s /su (2s↑s𝑚)) = 1s
) |
11 | 10 | fveq2d 6924 |
. . . 4
⊢ (𝑚 = 0s → ( bday ‘( 1s /su
(2s↑s𝑚))) = ( bday
‘ 1s )) |
12 | | bday1s 27894 |
. . . 4
⊢ ( bday ‘ 1s ) =
1o |
13 | 11, 12 | eqtrdi 2796 |
. . 3
⊢ (𝑚 = 0s → ( bday ‘( 1s /su
(2s↑s𝑚))) = 1o) |
14 | 13 | eleq1d 2829 |
. 2
⊢ (𝑚 = 0s → (( bday ‘( 1s /su
(2s↑s𝑚))) ∈ ω ↔ 1o
∈ ω)) |
15 | | oveq2 7456 |
. . . . 5
⊢ (𝑚 = 𝑛 → (2s↑s𝑚) =
(2s↑s𝑛)) |
16 | 15 | oveq2d 7464 |
. . . 4
⊢ (𝑚 = 𝑛 → ( 1s /su
(2s↑s𝑚)) = ( 1s /su
(2s↑s𝑛))) |
17 | 16 | fveq2d 6924 |
. . 3
⊢ (𝑚 = 𝑛 → ( bday
‘( 1s /su
(2s↑s𝑚))) = ( bday
‘( 1s /su
(2s↑s𝑛)))) |
18 | 17 | eleq1d 2829 |
. 2
⊢ (𝑚 = 𝑛 → (( bday
‘( 1s /su
(2s↑s𝑚))) ∈ ω ↔ ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω)) |
19 | | oveq2 7456 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) →
(2s↑s𝑚) = (2s↑s(𝑛 +s 1s
))) |
20 | 19 | oveq2d 7464 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) → (
1s /su (2s↑s𝑚)) = ( 1s
/su (2s↑s(𝑛 +s 1s
)))) |
21 | 20 | fveq2d 6924 |
. . 3
⊢ (𝑚 = (𝑛 +s 1s ) → ( bday ‘( 1s /su
(2s↑s𝑚))) = ( bday
‘( 1s /su
(2s↑s(𝑛 +s 1s
))))) |
22 | 21 | eleq1d 2829 |
. 2
⊢ (𝑚 = (𝑛 +s 1s ) → (( bday ‘( 1s /su
(2s↑s𝑚))) ∈ ω ↔ ( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈
ω)) |
23 | | oveq2 7456 |
. . . . 5
⊢ (𝑚 = 𝑁 →
(2s↑s𝑚) = (2s↑s𝑁)) |
24 | 23 | oveq2d 7464 |
. . . 4
⊢ (𝑚 = 𝑁 → ( 1s /su
(2s↑s𝑚)) = ( 1s /su
(2s↑s𝑁))) |
25 | 24 | fveq2d 6924 |
. . 3
⊢ (𝑚 = 𝑁 → ( bday
‘( 1s /su
(2s↑s𝑚))) = ( bday
‘( 1s /su
(2s↑s𝑁)))) |
26 | 25 | eleq1d 2829 |
. 2
⊢ (𝑚 = 𝑁 → (( bday
‘( 1s /su
(2s↑s𝑚))) ∈ ω ↔ ( bday ‘( 1s /su
(2s↑s𝑁))) ∈ ω)) |
27 | | 1onn 8696 |
. 2
⊢
1o ∈ ω |
28 | | cutpw2 28435 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su
(2s↑s(𝑛 +s 1s ))) = ({
0s } |s {( 1s /su
(2s↑s𝑛))})) |
29 | 28 | fveq2d 6924 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘( 1s
/su (2s↑s(𝑛 +s 1s )))) = ( bday ‘({ 0s } |s {( 1s
/su (2s↑s𝑛))}))) |
30 | | 0sno 27889 |
. . . . . . . . 9
⊢
0s ∈ No |
31 | 30 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 0s ∈ No ) |
32 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ 1s ∈ No ) |
33 | | expscl 28431 |
. . . . . . . . . 10
⊢
((2s ∈ No ∧ 𝑛 ∈ ℕ0s)
→ (2s↑s𝑛) ∈ No
) |
34 | 2, 33 | mpan 689 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s𝑛) ∈ No
) |
35 | | 2ne0s 28422 |
. . . . . . . . . 10
⊢
2s ≠ 0s |
36 | | expsne0 28432 |
. . . . . . . . . 10
⊢
((2s ∈ No ∧
2s ≠ 0s ∧ 𝑛 ∈ ℕ0s) →
(2s↑s𝑛) ≠ 0s ) |
37 | 2, 35, 36 | mp3an12 1451 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ (2s↑s𝑛) ≠ 0s ) |
38 | 32, 34, 37 | divscld 28266 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ ( 1s /su (2s↑s𝑛)) ∈
No ) |
39 | | muls02 28185 |
. . . . . . . . . . 11
⊢
((2s↑s𝑛) ∈ No
→ ( 0s ·s
(2s↑s𝑛)) = 0s ) |
40 | 34, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ ( 0s ·s
(2s↑s𝑛)) = 0s ) |
41 | | 0slt1s 27892 |
. . . . . . . . . 10
⊢
0s <s 1s |
42 | 40, 41 | eqbrtrdi 5205 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ ( 0s ·s
(2s↑s𝑛)) <s 1s ) |
43 | | 2nns 28420 |
. . . . . . . . . . . 12
⊢
2s ∈ ℕs |
44 | | nnsgt0 28360 |
. . . . . . . . . . . 12
⊢
(2s ∈ ℕs → 0s <s
2s) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . . . . 11
⊢
0s <s 2s |
46 | | expsgt0 28433 |
. . . . . . . . . . 11
⊢
((2s ∈ No ∧ 𝑛 ∈ ℕ0s
∧ 0s <s 2s) → 0s <s
(2s↑s𝑛)) |
47 | 2, 45, 46 | mp3an13 1452 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ 0s <s (2s↑s𝑛)) |
48 | 31, 32, 34, 47 | sltmuldivd 28271 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ (( 0s ·s
(2s↑s𝑛)) <s 1s ↔ 0s
<s ( 1s /su (2s↑s𝑛)))) |
49 | 42, 48 | mpbid 232 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ 0s <s ( 1s /su
(2s↑s𝑛))) |
50 | 31, 38, 49 | ssltsn 27855 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ { 0s } <<s {( 1s /su
(2s↑s𝑛))}) |
51 | | suc0 6470 |
. . . . . . . . . . . 12
⊢ suc
∅ = {∅} |
52 | | bday0s 27891 |
. . . . . . . . . . . . 13
⊢ ( bday ‘ 0s ) = ∅ |
53 | 52 | sneqi 4659 |
. . . . . . . . . . . 12
⊢ {( bday ‘ 0s )} =
{∅} |
54 | | bdayfn 27836 |
. . . . . . . . . . . . 13
⊢ bday Fn No
|
55 | | fnsnfv 7001 |
. . . . . . . . . . . . 13
⊢ (( bday Fn No ∧
0s ∈ No ) → {( bday ‘ 0s )} = (
bday “ { 0s })) |
56 | 54, 30, 55 | mp2an 691 |
. . . . . . . . . . . 12
⊢ {( bday ‘ 0s )} = (
bday “ { 0s }) |
57 | 51, 53, 56 | 3eqtr2i 2774 |
. . . . . . . . . . 11
⊢ suc
∅ = ( bday “ { 0s
}) |
58 | 57 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ suc ∅ = ( bday “ {
0s })) |
59 | | fnsnfv 7001 |
. . . . . . . . . . . 12
⊢ (( bday Fn No ∧ (
1s /su (2s↑s𝑛)) ∈
No ) → {( bday ‘( 1s
/su (2s↑s𝑛)))} = ( bday
“ {( 1s /su
(2s↑s𝑛))})) |
60 | 54, 59 | mpan 689 |
. . . . . . . . . . 11
⊢ ((
1s /su (2s↑s𝑛)) ∈
No → {( bday ‘( 1s
/su (2s↑s𝑛)))} = ( bday
“ {( 1s /su
(2s↑s𝑛))})) |
61 | 38, 60 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0s
→ {( bday ‘( 1s
/su (2s↑s𝑛)))} = ( bday
“ {( 1s /su
(2s↑s𝑛))})) |
62 | 58, 61 | uneq12d 4192 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0s
→ (suc ∅ ∪ {( bday ‘(
1s /su (2s↑s𝑛)))}) = ((
bday “ { 0s }) ∪ ( bday
“ {( 1s /su
(2s↑s𝑛))}))) |
63 | | imaundi 6181 |
. . . . . . . . 9
⊢ ( bday “ ({ 0s } ∪ {( 1s
/su (2s↑s𝑛))})) = (( bday
“ { 0s }) ∪ ( bday “
{( 1s /su (2s↑s𝑛))})) |
64 | 62, 63 | eqtr4di 2798 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0s
→ (suc ∅ ∪ {( bday ‘(
1s /su (2s↑s𝑛)))}) = (
bday “ ({ 0s } ∪ {( 1s
/su (2s↑s𝑛))}))) |
65 | | 0ss 4423 |
. . . . . . . . . 10
⊢ ∅
⊆ ( bday ‘( 1s
/su (2s↑s𝑛))) |
66 | | ord0 6448 |
. . . . . . . . . . 11
⊢ Ord
∅ |
67 | | bdayelon 27839 |
. . . . . . . . . . . 12
⊢ ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ On |
68 | 67 | onordi 6506 |
. . . . . . . . . . 11
⊢ Ord
( bday ‘( 1s /su
(2s↑s𝑛))) |
69 | | ordsucsssuc 7859 |
. . . . . . . . . . 11
⊢ ((Ord
∅ ∧ Ord ( bday ‘( 1s
/su (2s↑s𝑛)))) → (∅ ⊆ ( bday ‘( 1s /su
(2s↑s𝑛))) ↔ suc ∅ ⊆ suc ( bday ‘( 1s /su
(2s↑s𝑛))))) |
70 | 66, 68, 69 | mp2an 691 |
. . . . . . . . . 10
⊢ (∅
⊆ ( bday ‘( 1s
/su (2s↑s𝑛))) ↔ suc ∅ ⊆ suc ( bday ‘( 1s /su
(2s↑s𝑛)))) |
71 | 65, 70 | mpbi 230 |
. . . . . . . . 9
⊢ suc
∅ ⊆ suc ( bday ‘( 1s
/su (2s↑s𝑛))) |
72 | | fvex 6933 |
. . . . . . . . . . 11
⊢ ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ V |
73 | 72 | sucid 6477 |
. . . . . . . . . 10
⊢ ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ suc ( bday
‘( 1s /su
(2s↑s𝑛))) |
74 | | snssi 4833 |
. . . . . . . . . 10
⊢ (( bday ‘( 1s /su
(2s↑s𝑛))) ∈ suc ( bday
‘( 1s /su
(2s↑s𝑛))) → {( bday
‘( 1s /su
(2s↑s𝑛)))} ⊆ suc ( bday
‘( 1s /su
(2s↑s𝑛)))) |
75 | 73, 74 | ax-mp 5 |
. . . . . . . . 9
⊢ {( bday ‘( 1s /su
(2s↑s𝑛)))} ⊆ suc ( bday
‘( 1s /su
(2s↑s𝑛))) |
76 | 71, 75 | unssi 4214 |
. . . . . . . 8
⊢ (suc
∅ ∪ {( bday ‘( 1s
/su (2s↑s𝑛)))}) ⊆ suc (
bday ‘( 1s /su
(2s↑s𝑛))) |
77 | 64, 76 | eqsstrrdi 4064 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0s
→ ( bday “ ({ 0s } ∪ {(
1s /su (2s↑s𝑛))})) ⊆ suc ( bday ‘( 1s /su
(2s↑s𝑛)))) |
78 | 67 | onsuci 7875 |
. . . . . . . 8
⊢ suc
( bday ‘( 1s /su
(2s↑s𝑛))) ∈ On |
79 | | scutbdaybnd 27878 |
. . . . . . . 8
⊢ (({
0s } <<s {( 1s /su
(2s↑s𝑛))} ∧ suc ( bday
‘( 1s /su
(2s↑s𝑛))) ∈ On ∧ (
bday “ ({ 0s } ∪ {( 1s
/su (2s↑s𝑛))})) ⊆ suc (
bday ‘( 1s /su
(2s↑s𝑛)))) → ( bday
‘({ 0s } |s {( 1s /su
(2s↑s𝑛))})) ⊆ suc (
bday ‘( 1s /su
(2s↑s𝑛)))) |
80 | 78, 79 | mp3an2 1449 |
. . . . . . 7
⊢ (({
0s } <<s {( 1s /su
(2s↑s𝑛))} ∧ ( bday
“ ({ 0s } ∪ {( 1s /su
(2s↑s𝑛))})) ⊆ suc (
bday ‘( 1s /su
(2s↑s𝑛)))) → ( bday
‘({ 0s } |s {( 1s /su
(2s↑s𝑛))})) ⊆ suc (
bday ‘( 1s /su
(2s↑s𝑛)))) |
81 | 50, 77, 80 | syl2anc 583 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘({ 0s } |s {(
1s /su (2s↑s𝑛))})) ⊆ suc ( bday ‘( 1s /su
(2s↑s𝑛)))) |
82 | 29, 81 | eqsstrd 4047 |
. . . . 5
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘( 1s
/su (2s↑s(𝑛 +s 1s )))) ⊆ suc
( bday ‘( 1s /su
(2s↑s𝑛)))) |
83 | | bdayelon 27839 |
. . . . . 6
⊢ ( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈
On |
84 | | onsssuc 6485 |
. . . . . 6
⊢ ((( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈ On
∧ suc ( bday ‘( 1s
/su (2s↑s𝑛))) ∈ On) → (( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ⊆ suc
( bday ‘( 1s /su
(2s↑s𝑛))) ↔ ( bday
‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈ suc
suc ( bday ‘( 1s
/su (2s↑s𝑛))))) |
85 | 83, 78, 84 | mp2an 691 |
. . . . 5
⊢ (( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ⊆ suc
( bday ‘( 1s /su
(2s↑s𝑛))) ↔ ( bday
‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈ suc
suc ( bday ‘( 1s
/su (2s↑s𝑛)))) |
86 | 82, 85 | sylib 218 |
. . . 4
⊢ (𝑛 ∈ ℕ0s
→ ( bday ‘( 1s
/su (2s↑s(𝑛 +s 1s )))) ∈ suc
suc ( bday ‘( 1s
/su (2s↑s𝑛)))) |
87 | | peano2 7929 |
. . . . 5
⊢ (( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω → suc ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω) |
88 | | peano2 7929 |
. . . . 5
⊢ (suc
( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω → suc suc ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω) |
89 | 87, 88 | syl 17 |
. . . 4
⊢ (( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω → suc suc ( bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω) |
90 | | elnn 7914 |
. . . 4
⊢ ((( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈ suc
suc ( bday ‘( 1s
/su (2s↑s𝑛))) ∧ suc suc (
bday ‘( 1s /su
(2s↑s𝑛))) ∈ ω) → ( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈
ω) |
91 | 86, 89, 90 | syl2an 595 |
. . 3
⊢ ((𝑛 ∈ ℕ0s
∧ ( bday ‘( 1s
/su (2s↑s𝑛))) ∈ ω) → ( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈
ω) |
92 | 91 | ex 412 |
. 2
⊢ (𝑛 ∈ ℕ0s
→ (( bday ‘( 1s
/su (2s↑s𝑛))) ∈ ω → ( bday ‘( 1s /su
(2s↑s(𝑛 +s 1s )))) ∈
ω)) |
93 | 14, 18, 22, 26, 27, 92 | n0sind 28355 |
1
⊢ (𝑁 ∈ ℕ0s
→ ( bday ‘( 1s
/su (2s↑s𝑁))) ∈ ω) |