MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2bday Structured version   Visualization version   GIF version

Theorem pw2bday 28436
Description: The inverses of powers of two have finite birthdays. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
pw2bday (𝑁 ∈ ℕ0s → ( bday ‘( 1s /su (2ss𝑁))) ∈ ω)

Proof of Theorem pw2bday
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . . . 8 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
2 2sno 28421 . . . . . . . . 9 2s No
3 exps0 28428 . . . . . . . . 9 (2s No → (2ss 0s ) = 1s )
42, 3ax-mp 5 . . . . . . . 8 (2ss 0s ) = 1s
51, 4eqtrdi 2796 . . . . . . 7 (𝑚 = 0s → (2ss𝑚) = 1s )
65oveq2d 7464 . . . . . 6 (𝑚 = 0s → ( 1s /su (2ss𝑚)) = ( 1s /su 1s ))
7 1sno 27890 . . . . . . 7 1s No
8 divs1 28247 . . . . . . 7 ( 1s No → ( 1s /su 1s ) = 1s )
97, 8ax-mp 5 . . . . . 6 ( 1s /su 1s ) = 1s
106, 9eqtrdi 2796 . . . . 5 (𝑚 = 0s → ( 1s /su (2ss𝑚)) = 1s )
1110fveq2d 6924 . . . 4 (𝑚 = 0s → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘ 1s ))
12 bday1s 27894 . . . 4 ( bday ‘ 1s ) = 1o
1311, 12eqtrdi 2796 . . 3 (𝑚 = 0s → ( bday ‘( 1s /su (2ss𝑚))) = 1o)
1413eleq1d 2829 . 2 (𝑚 = 0s → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ 1o ∈ ω))
15 oveq2 7456 . . . . 5 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1615oveq2d 7464 . . . 4 (𝑚 = 𝑛 → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss𝑛)))
1716fveq2d 6924 . . 3 (𝑚 = 𝑛 → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘( 1s /su (2ss𝑛))))
1817eleq1d 2829 . 2 (𝑚 = 𝑛 → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ ( bday ‘( 1s /su (2ss𝑛))) ∈ ω))
19 oveq2 7456 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
2019oveq2d 7464 . . . 4 (𝑚 = (𝑛 +s 1s ) → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss(𝑛 +s 1s ))))
2120fveq2d 6924 . . 3 (𝑚 = (𝑛 +s 1s ) → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))))
2221eleq1d 2829 . 2 (𝑚 = (𝑛 +s 1s ) → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω))
23 oveq2 7456 . . . . 5 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
2423oveq2d 7464 . . . 4 (𝑚 = 𝑁 → ( 1s /su (2ss𝑚)) = ( 1s /su (2ss𝑁)))
2524fveq2d 6924 . . 3 (𝑚 = 𝑁 → ( bday ‘( 1s /su (2ss𝑚))) = ( bday ‘( 1s /su (2ss𝑁))))
2625eleq1d 2829 . 2 (𝑚 = 𝑁 → (( bday ‘( 1s /su (2ss𝑚))) ∈ ω ↔ ( bday ‘( 1s /su (2ss𝑁))) ∈ ω))
27 1onn 8696 . 2 1o ∈ ω
28 cutpw2 28435 . . . . . . 7 (𝑛 ∈ ℕ0s → ( 1s /su (2ss(𝑛 +s 1s ))) = ({ 0s } |s {( 1s /su (2ss𝑛))}))
2928fveq2d 6924 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) = ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})))
30 0sno 27889 . . . . . . . . 9 0s No
3130a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0s → 0s No )
327a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0s → 1s No )
33 expscl 28431 . . . . . . . . . 10 ((2s No 𝑛 ∈ ℕ0s) → (2ss𝑛) ∈ No )
342, 33mpan 689 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (2ss𝑛) ∈ No )
35 2ne0s 28422 . . . . . . . . . 10 2s ≠ 0s
36 expsne0 28432 . . . . . . . . . 10 ((2s No ∧ 2s ≠ 0s𝑛 ∈ ℕ0s) → (2ss𝑛) ≠ 0s )
372, 35, 36mp3an12 1451 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (2ss𝑛) ≠ 0s )
3832, 34, 37divscld 28266 . . . . . . . 8 (𝑛 ∈ ℕ0s → ( 1s /su (2ss𝑛)) ∈ No )
39 muls02 28185 . . . . . . . . . . 11 ((2ss𝑛) ∈ No → ( 0s ·s (2ss𝑛)) = 0s )
4034, 39syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → ( 0s ·s (2ss𝑛)) = 0s )
41 0slt1s 27892 . . . . . . . . . 10 0s <s 1s
4240, 41eqbrtrdi 5205 . . . . . . . . 9 (𝑛 ∈ ℕ0s → ( 0s ·s (2ss𝑛)) <s 1s )
43 2nns 28420 . . . . . . . . . . . 12 2s ∈ ℕs
44 nnsgt0 28360 . . . . . . . . . . . 12 (2s ∈ ℕs → 0s <s 2s)
4543, 44ax-mp 5 . . . . . . . . . . 11 0s <s 2s
46 expsgt0 28433 . . . . . . . . . . 11 ((2s No 𝑛 ∈ ℕ0s ∧ 0s <s 2s) → 0s <s (2ss𝑛))
472, 45, 46mp3an13 1452 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → 0s <s (2ss𝑛))
4831, 32, 34, 47sltmuldivd 28271 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (( 0s ·s (2ss𝑛)) <s 1s ↔ 0s <s ( 1s /su (2ss𝑛))))
4942, 48mpbid 232 . . . . . . . 8 (𝑛 ∈ ℕ0s → 0s <s ( 1s /su (2ss𝑛)))
5031, 38, 49ssltsn 27855 . . . . . . 7 (𝑛 ∈ ℕ0s → { 0s } <<s {( 1s /su (2ss𝑛))})
51 suc0 6470 . . . . . . . . . . . 12 suc ∅ = {∅}
52 bday0s 27891 . . . . . . . . . . . . 13 ( bday ‘ 0s ) = ∅
5352sneqi 4659 . . . . . . . . . . . 12 {( bday ‘ 0s )} = {∅}
54 bdayfn 27836 . . . . . . . . . . . . 13 bday Fn No
55 fnsnfv 7001 . . . . . . . . . . . . 13 (( bday Fn No ∧ 0s No ) → {( bday ‘ 0s )} = ( bday “ { 0s }))
5654, 30, 55mp2an 691 . . . . . . . . . . . 12 {( bday ‘ 0s )} = ( bday “ { 0s })
5751, 53, 563eqtr2i 2774 . . . . . . . . . . 11 suc ∅ = ( bday “ { 0s })
5857a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → suc ∅ = ( bday “ { 0s }))
59 fnsnfv 7001 . . . . . . . . . . . 12 (( bday Fn No ∧ ( 1s /su (2ss𝑛)) ∈ No ) → {( bday ‘( 1s /su (2ss𝑛)))} = ( bday “ {( 1s /su (2ss𝑛))}))
6054, 59mpan 689 . . . . . . . . . . 11 (( 1s /su (2ss𝑛)) ∈ No → {( bday ‘( 1s /su (2ss𝑛)))} = ( bday “ {( 1s /su (2ss𝑛))}))
6138, 60syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0s → {( bday ‘( 1s /su (2ss𝑛)))} = ( bday “ {( 1s /su (2ss𝑛))}))
6258, 61uneq12d 4192 . . . . . . . . 9 (𝑛 ∈ ℕ0s → (suc ∅ ∪ {( bday ‘( 1s /su (2ss𝑛)))}) = (( bday “ { 0s }) ∪ ( bday “ {( 1s /su (2ss𝑛))})))
63 imaundi 6181 . . . . . . . . 9 ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) = (( bday “ { 0s }) ∪ ( bday “ {( 1s /su (2ss𝑛))}))
6462, 63eqtr4di 2798 . . . . . . . 8 (𝑛 ∈ ℕ0s → (suc ∅ ∪ {( bday ‘( 1s /su (2ss𝑛)))}) = ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})))
65 0ss 4423 . . . . . . . . . 10 ∅ ⊆ ( bday ‘( 1s /su (2ss𝑛)))
66 ord0 6448 . . . . . . . . . . 11 Ord ∅
67 bdayelon 27839 . . . . . . . . . . . 12 ( bday ‘( 1s /su (2ss𝑛))) ∈ On
6867onordi 6506 . . . . . . . . . . 11 Ord ( bday ‘( 1s /su (2ss𝑛)))
69 ordsucsssuc 7859 . . . . . . . . . . 11 ((Ord ∅ ∧ Ord ( bday ‘( 1s /su (2ss𝑛)))) → (∅ ⊆ ( bday ‘( 1s /su (2ss𝑛))) ↔ suc ∅ ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))))
7066, 68, 69mp2an 691 . . . . . . . . . 10 (∅ ⊆ ( bday ‘( 1s /su (2ss𝑛))) ↔ suc ∅ ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
7165, 70mpbi 230 . . . . . . . . 9 suc ∅ ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))
72 fvex 6933 . . . . . . . . . . 11 ( bday ‘( 1s /su (2ss𝑛))) ∈ V
7372sucid 6477 . . . . . . . . . 10 ( bday ‘( 1s /su (2ss𝑛))) ∈ suc ( bday ‘( 1s /su (2ss𝑛)))
74 snssi 4833 . . . . . . . . . 10 (( bday ‘( 1s /su (2ss𝑛))) ∈ suc ( bday ‘( 1s /su (2ss𝑛))) → {( bday ‘( 1s /su (2ss𝑛)))} ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
7573, 74ax-mp 5 . . . . . . . . 9 {( bday ‘( 1s /su (2ss𝑛)))} ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))
7671, 75unssi 4214 . . . . . . . 8 (suc ∅ ∪ {( bday ‘( 1s /su (2ss𝑛)))}) ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))
7764, 76eqsstrrdi 4064 . . . . . . 7 (𝑛 ∈ ℕ0s → ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
7867onsuci 7875 . . . . . . . 8 suc ( bday ‘( 1s /su (2ss𝑛))) ∈ On
79 scutbdaybnd 27878 . . . . . . . 8 (({ 0s } <<s {( 1s /su (2ss𝑛))} ∧ suc ( bday ‘( 1s /su (2ss𝑛))) ∈ On ∧ ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))) → ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
8078, 79mp3an2 1449 . . . . . . 7 (({ 0s } <<s {( 1s /su (2ss𝑛))} ∧ ( bday “ ({ 0s } ∪ {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛)))) → ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
8150, 77, 80syl2anc 583 . . . . . 6 (𝑛 ∈ ℕ0s → ( bday ‘({ 0s } |s {( 1s /su (2ss𝑛))})) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
8229, 81eqsstrd 4047 . . . . 5 (𝑛 ∈ ℕ0s → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))))
83 bdayelon 27839 . . . . . 6 ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ On
84 onsssuc 6485 . . . . . 6 ((( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ On ∧ suc ( bday ‘( 1s /su (2ss𝑛))) ∈ On) → (( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))) ↔ ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛)))))
8583, 78, 84mp2an 691 . . . . 5 (( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ⊆ suc ( bday ‘( 1s /su (2ss𝑛))) ↔ ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛))))
8682, 85sylib 218 . . . 4 (𝑛 ∈ ℕ0s → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛))))
87 peano2 7929 . . . . 5 (( bday ‘( 1s /su (2ss𝑛))) ∈ ω → suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω)
88 peano2 7929 . . . . 5 (suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω → suc suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω)
8987, 88syl 17 . . . 4 (( bday ‘( 1s /su (2ss𝑛))) ∈ ω → suc suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω)
90 elnn 7914 . . . 4 ((( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ suc suc ( bday ‘( 1s /su (2ss𝑛))) ∧ suc suc ( bday ‘( 1s /su (2ss𝑛))) ∈ ω) → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω)
9186, 89, 90syl2an 595 . . 3 ((𝑛 ∈ ℕ0s ∧ ( bday ‘( 1s /su (2ss𝑛))) ∈ ω) → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω)
9291ex 412 . 2 (𝑛 ∈ ℕ0s → (( bday ‘( 1s /su (2ss𝑛))) ∈ ω → ( bday ‘( 1s /su (2ss(𝑛 +s 1s )))) ∈ ω))
9314, 18, 22, 26, 27, 92n0sind 28355 1 (𝑁 ∈ ℕ0s → ( bday ‘( 1s /su (2ss𝑁))) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  cun 3974  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cima 5703  Ord word 6394  Oncon0 6395  suc csuc 6397   Fn wfn 6568  cfv 6573  (class class class)co 7448  ωcom 7903  1oc1o 8515   No csur 27702   <s cslt 27703   bday cbday 27704   <<s csslt 27843   |s cscut 27845   0s c0s 27885   1s c1s 27886   +s cadds 28010   ·s cmuls 28150   /su cdivs 28231  0scnn0s 28336  scnns 28337  2sc2s 28412  scexps 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232  df-seqs 28308  df-n0s 28338  df-nns 28339  df-zs 28383  df-2s 28413  df-exps 28415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator