Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version |
Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
0elunit | ⊢ 0 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10961 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12057 | . 2 ⊢ 0 ≤ 0 | |
3 | 0le1 11481 | . 2 ⊢ 0 ≤ 1 | |
4 | elicc01 13180 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1339 | 1 ⊢ 0 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 0cc0 10855 1c1 10856 ≤ cle 10994 [,]cicc 13064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-icc 13068 |
This theorem is referenced by: xrhmeo 24090 htpycom 24120 htpyid 24121 htpyco1 24122 htpyco2 24123 htpycc 24124 phtpy01 24129 phtpycom 24132 phtpyid 24133 phtpyco2 24134 phtpycc 24135 reparphti 24141 pcocn 24161 pcohtpylem 24163 pcoptcl 24165 pcopt 24166 pcopt2 24167 pcoass 24168 pcorevcl 24169 pcorevlem 24170 pi1xfrf 24197 pi1xfr 24199 pi1xfrcnvlem 24200 pi1xfrcnv 24201 pi1cof 24203 pi1coghm 24205 dvlipcn 25139 lgamgulmlem2 26160 ttgcontlem1 27233 brbtwn2 27254 axsegconlem1 27266 axpaschlem 27289 axcontlem7 27319 axcontlem8 27320 xrge0iifcnv 31862 xrge0iifiso 31864 xrge0iifhom 31866 cnpconn 33171 pconnconn 33172 txpconn 33173 ptpconn 33174 indispconn 33175 connpconn 33176 sconnpi1 33180 txsconnlem 33181 txsconn 33182 cvxpconn 33183 cvxsconn 33184 cvmliftlem14 33238 cvmlift2lem2 33245 cvmlift2lem3 33246 cvmlift2lem8 33251 cvmlift2lem12 33255 cvmlift2lem13 33256 cvmliftphtlem 33258 cvmliftpht 33259 cvmlift3lem1 33260 cvmlift3lem2 33261 cvmlift3lem4 33263 cvmlift3lem5 33264 cvmlift3lem6 33265 cvmlift3lem9 33268 lcmineqlem12 40028 |
Copyright terms: Public domain | W3C validator |