| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version | ||
| Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| 0elunit | ⊢ 0 ∈ (0[,]1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11136 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 0le0 12247 | . 2 ⊢ 0 ≤ 0 | |
| 3 | 0le1 11661 | . 2 ⊢ 0 ≤ 1 | |
| 4 | elicc01 13387 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1342 | 1 ⊢ 0 ∈ (0[,]1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 ≤ cle 11169 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-icc 13273 |
| This theorem is referenced by: xrhmeo 24860 htpycom 24891 htpyid 24892 htpyco1 24893 htpyco2 24894 htpycc 24895 phtpy01 24900 phtpycom 24903 phtpyid 24904 phtpyco2 24905 phtpycc 24906 reparphti 24912 reparphtiOLD 24913 pcocn 24933 pcohtpylem 24935 pcoptcl 24937 pcopt 24938 pcopt2 24939 pcoass 24940 pcorevcl 24941 pcorevlem 24942 pi1xfrf 24969 pi1xfr 24971 pi1xfrcnvlem 24972 pi1xfrcnv 24973 pi1cof 24975 pi1coghm 24977 dvlipcn 25915 lgamgulmlem2 26956 ttgcontlem1 28848 brbtwn2 28868 axsegconlem1 28880 axpaschlem 28903 axcontlem7 28933 axcontlem8 28934 xrge0iifcnv 33902 xrge0iifiso 33904 xrge0iifhom 33906 cnpconn 35205 pconnconn 35206 txpconn 35207 ptpconn 35208 indispconn 35209 connpconn 35210 sconnpi1 35214 txsconnlem 35215 txsconn 35216 cvxpconn 35217 cvxsconn 35218 cvmliftlem14 35272 cvmlift2lem2 35279 cvmlift2lem3 35280 cvmlift2lem8 35285 cvmlift2lem12 35289 cvmlift2lem13 35290 cvmliftphtlem 35292 cvmliftpht 35293 cvmlift3lem1 35294 cvmlift3lem2 35295 cvmlift3lem4 35297 cvmlift3lem5 35298 cvmlift3lem6 35299 cvmlift3lem9 35302 lcmineqlem12 42016 |
| Copyright terms: Public domain | W3C validator |