| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version | ||
| Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| 0elunit | ⊢ 0 ∈ (0[,]1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11125 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 0le0 12237 | . 2 ⊢ 0 ≤ 0 | |
| 3 | 0le1 11651 | . 2 ⊢ 0 ≤ 1 | |
| 4 | elicc01 13373 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1342 | 1 ⊢ 0 ∈ (0[,]1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 ≤ cle 11158 [,]cicc 13255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-icc 13259 |
| This theorem is referenced by: xrhmeo 24891 htpycom 24922 htpyid 24923 htpyco1 24924 htpyco2 24925 htpycc 24926 phtpy01 24931 phtpycom 24934 phtpyid 24935 phtpyco2 24936 phtpycc 24937 reparphti 24943 reparphtiOLD 24944 pcocn 24964 pcohtpylem 24966 pcoptcl 24968 pcopt 24969 pcopt2 24970 pcoass 24971 pcorevcl 24972 pcorevlem 24973 pi1xfrf 25000 pi1xfr 25002 pi1xfrcnvlem 25003 pi1xfrcnv 25004 pi1cof 25006 pi1coghm 25008 dvlipcn 25946 lgamgulmlem2 26987 ttgcontlem1 28883 brbtwn2 28904 axsegconlem1 28916 axpaschlem 28939 axcontlem7 28969 axcontlem8 28970 xrge0iifcnv 34018 xrge0iifiso 34020 xrge0iifhom 34022 cnpconn 35346 pconnconn 35347 txpconn 35348 ptpconn 35349 indispconn 35350 connpconn 35351 sconnpi1 35355 txsconnlem 35356 txsconn 35357 cvxpconn 35358 cvxsconn 35359 cvmliftlem14 35413 cvmlift2lem2 35420 cvmlift2lem3 35421 cvmlift2lem8 35426 cvmlift2lem12 35430 cvmlift2lem13 35431 cvmliftphtlem 35433 cvmliftpht 35434 cvmlift3lem1 35435 cvmlift3lem2 35436 cvmlift3lem4 35438 cvmlift3lem5 35439 cvmlift3lem6 35440 cvmlift3lem9 35443 lcmineqlem12 42206 |
| Copyright terms: Public domain | W3C validator |