![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version |
Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
0elunit | ⊢ 0 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12394 | . 2 ⊢ 0 ≤ 0 | |
3 | 0le1 11813 | . 2 ⊢ 0 ≤ 1 | |
4 | elicc01 13526 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1341 | 1 ⊢ 0 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-icc 13414 |
This theorem is referenced by: xrhmeo 24996 htpycom 25027 htpyid 25028 htpyco1 25029 htpyco2 25030 htpycc 25031 phtpy01 25036 phtpycom 25039 phtpyid 25040 phtpyco2 25041 phtpycc 25042 reparphti 25048 reparphtiOLD 25049 pcocn 25069 pcohtpylem 25071 pcoptcl 25073 pcopt 25074 pcopt2 25075 pcoass 25076 pcorevcl 25077 pcorevlem 25078 pi1xfrf 25105 pi1xfr 25107 pi1xfrcnvlem 25108 pi1xfrcnv 25109 pi1cof 25111 pi1coghm 25113 dvlipcn 26053 lgamgulmlem2 27091 ttgcontlem1 28917 brbtwn2 28938 axsegconlem1 28950 axpaschlem 28973 axcontlem7 29003 axcontlem8 29004 xrge0iifcnv 33879 xrge0iifiso 33881 xrge0iifhom 33883 cnpconn 35198 pconnconn 35199 txpconn 35200 ptpconn 35201 indispconn 35202 connpconn 35203 sconnpi1 35207 txsconnlem 35208 txsconn 35209 cvxpconn 35210 cvxsconn 35211 cvmliftlem14 35265 cvmlift2lem2 35272 cvmlift2lem3 35273 cvmlift2lem8 35278 cvmlift2lem12 35282 cvmlift2lem13 35283 cvmliftphtlem 35285 cvmliftpht 35286 cvmlift3lem1 35287 cvmlift3lem2 35288 cvmlift3lem4 35290 cvmlift3lem5 35291 cvmlift3lem6 35292 cvmlift3lem9 35295 lcmineqlem12 41997 |
Copyright terms: Public domain | W3C validator |