Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version |
Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
0elunit | ⊢ 0 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10714 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 11810 | . 2 ⊢ 0 ≤ 0 | |
3 | 0le1 11234 | . 2 ⊢ 0 ≤ 1 | |
4 | elicc01 12933 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1342 | 1 ⊢ 0 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2113 class class class wbr 5027 (class class class)co 7164 ℝcr 10607 0cc0 10608 1c1 10609 ≤ cle 10747 [,]cicc 12817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-icc 12821 |
This theorem is referenced by: xrhmeo 23691 htpycom 23721 htpyid 23722 htpyco1 23723 htpyco2 23724 htpycc 23725 phtpy01 23730 phtpycom 23733 phtpyid 23734 phtpyco2 23735 phtpycc 23736 reparphti 23742 pcocn 23762 pcohtpylem 23764 pcoptcl 23766 pcopt 23767 pcopt2 23768 pcoass 23769 pcorevcl 23770 pcorevlem 23771 pi1xfrf 23798 pi1xfr 23800 pi1xfrcnvlem 23801 pi1xfrcnv 23802 pi1cof 23804 pi1coghm 23806 dvlipcn 24738 lgamgulmlem2 25759 ttgcontlem1 26823 brbtwn2 26843 axsegconlem1 26855 axpaschlem 26878 axcontlem7 26908 axcontlem8 26909 xrge0iifcnv 31447 xrge0iifiso 31449 xrge0iifhom 31451 cnpconn 32755 pconnconn 32756 txpconn 32757 ptpconn 32758 indispconn 32759 connpconn 32760 sconnpi1 32764 txsconnlem 32765 txsconn 32766 cvxpconn 32767 cvxsconn 32768 cvmliftlem14 32822 cvmlift2lem2 32829 cvmlift2lem3 32830 cvmlift2lem8 32835 cvmlift2lem12 32839 cvmlift2lem13 32840 cvmliftphtlem 32842 cvmliftpht 32843 cvmlift3lem1 32844 cvmlift3lem2 32845 cvmlift3lem4 32847 cvmlift3lem5 32848 cvmlift3lem6 32849 cvmlift3lem9 32852 lcmineqlem12 39657 |
Copyright terms: Public domain | W3C validator |