Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version |
Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
0elunit | ⊢ 0 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11023 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12120 | . 2 ⊢ 0 ≤ 0 | |
3 | 0le1 11544 | . 2 ⊢ 0 ≤ 1 | |
4 | elicc01 13244 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1341 | 1 ⊢ 0 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 ℝcr 10916 0cc0 10917 1c1 10918 ≤ cle 11056 [,]cicc 13128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-icc 13132 |
This theorem is referenced by: xrhmeo 24154 htpycom 24184 htpyid 24185 htpyco1 24186 htpyco2 24187 htpycc 24188 phtpy01 24193 phtpycom 24196 phtpyid 24197 phtpyco2 24198 phtpycc 24199 reparphti 24205 pcocn 24225 pcohtpylem 24227 pcoptcl 24229 pcopt 24230 pcopt2 24231 pcoass 24232 pcorevcl 24233 pcorevlem 24234 pi1xfrf 24261 pi1xfr 24263 pi1xfrcnvlem 24264 pi1xfrcnv 24265 pi1cof 24267 pi1coghm 24269 dvlipcn 25203 lgamgulmlem2 26224 ttgcontlem1 27297 brbtwn2 27318 axsegconlem1 27330 axpaschlem 27353 axcontlem7 27383 axcontlem8 27384 xrge0iifcnv 31928 xrge0iifiso 31930 xrge0iifhom 31932 cnpconn 33237 pconnconn 33238 txpconn 33239 ptpconn 33240 indispconn 33241 connpconn 33242 sconnpi1 33246 txsconnlem 33247 txsconn 33248 cvxpconn 33249 cvxsconn 33250 cvmliftlem14 33304 cvmlift2lem2 33311 cvmlift2lem3 33312 cvmlift2lem8 33317 cvmlift2lem12 33321 cvmlift2lem13 33322 cvmliftphtlem 33324 cvmliftpht 33325 cvmlift3lem1 33326 cvmlift3lem2 33327 cvmlift3lem4 33329 cvmlift3lem5 33330 cvmlift3lem6 33331 cvmlift3lem9 33334 lcmineqlem12 40090 |
Copyright terms: Public domain | W3C validator |