![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elunit | Structured version Visualization version GIF version |
Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
0elunit | ⊢ 0 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10489 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 11586 | . 2 ⊢ 0 ≤ 0 | |
3 | 0le1 11011 | . 2 ⊢ 0 ≤ 1 | |
4 | elicc01 12704 | . 2 ⊢ (0 ∈ (0[,]1) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1334 | 1 ⊢ 0 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 class class class wbr 4962 (class class class)co 7016 ℝcr 10382 0cc0 10383 1c1 10384 ≤ cle 10522 [,]cicc 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-icc 12595 |
This theorem is referenced by: xrhmeo 23233 htpycom 23263 htpyid 23264 htpyco1 23265 htpyco2 23266 htpycc 23267 phtpy01 23272 phtpycom 23275 phtpyid 23276 phtpyco2 23277 phtpycc 23278 reparphti 23284 pcocn 23304 pcohtpylem 23306 pcoptcl 23308 pcopt 23309 pcopt2 23310 pcoass 23311 pcorevcl 23312 pcorevlem 23313 pi1xfrf 23340 pi1xfr 23342 pi1xfrcnvlem 23343 pi1xfrcnv 23344 pi1cof 23346 pi1coghm 23348 dvlipcn 24274 lgamgulmlem2 25289 ttgcontlem1 26354 brbtwn2 26374 axsegconlem1 26386 axpaschlem 26409 axcontlem7 26439 axcontlem8 26440 xrge0iifcnv 30793 xrge0iifiso 30795 xrge0iifhom 30797 cnpconn 32085 pconnconn 32086 txpconn 32087 ptpconn 32088 indispconn 32089 connpconn 32090 sconnpi1 32094 txsconnlem 32095 txsconn 32096 cvxpconn 32097 cvxsconn 32098 cvmliftlem14 32152 cvmlift2lem2 32159 cvmlift2lem3 32160 cvmlift2lem8 32165 cvmlift2lem12 32169 cvmlift2lem13 32170 cvmliftphtlem 32172 cvmliftpht 32173 cvmlift3lem1 32174 cvmlift3lem2 32175 cvmlift3lem4 32177 cvmlift3lem5 32178 cvmlift3lem6 32179 cvmlift3lem9 32182 |
Copyright terms: Public domain | W3C validator |