| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn | Structured version Visualization version GIF version | ||
| Description: Member of span of the singleton of a vector. (elspansn 31547 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| ellspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | lspsn.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | lspsn 20959 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 7 | 6 | eleq2d 2820 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)})) |
| 8 | id 22 | . . . . 5 ⊢ (𝑈 = (𝑘 · 𝑋) → 𝑈 = (𝑘 · 𝑋)) | |
| 9 | ovex 7438 | . . . . 5 ⊢ (𝑘 · 𝑋) ∈ V | |
| 10 | 8, 9 | eqeltrdi 2842 | . . . 4 ⊢ (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) |
| 11 | 10 | rexlimivw 3137 | . . 3 ⊢ (∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) |
| 12 | eqeq1 2739 | . . . 4 ⊢ (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋))) | |
| 13 | 12 | rexbidv 3164 | . . 3 ⊢ (𝑣 = 𝑈 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 14 | 11, 13 | elab3 3665 | . 2 ⊢ (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋)) |
| 15 | 7, 14 | bitrdi 287 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 LModclmod 20817 LSpanclspn 20928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lsp 20929 |
| This theorem is referenced by: lspsnss2 20962 lsmspsn 21042 lspsneleq 21076 lspsneq 21083 lspdisj 21086 elrspsn 21201 rspsn 21294 ccfldextdgrr 33713 lshpdisj 39005 lshpsmreu 39127 lkrlspeqN 39189 lcfl7lem 41518 lcfrvalsnN 41560 mapdpglem3 41694 hdmapglem7a 41946 |
| Copyright terms: Public domain | W3C validator |