![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrspsn | Structured version Visualization version GIF version |
Description: Membership in a principal ideal. Analogous to ellspsn 20976. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
elrspsn.1 | ⊢ 𝐵 = (Base‘𝑅) |
elrspsn.2 | ⊢ · = (.r‘𝑅) |
elrspsn.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
elrspsn | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 21185 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
2 | simpr 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
3 | elrspsn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eleqtrdi 2836 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑅)) |
5 | eqid 2726 | . . . 4 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
6 | eqid 2726 | . . . 4 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
7 | rlmbas 21175 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
8 | elrspsn.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
9 | rlmvsca 21182 | . . . . 5 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2754 | . . . 4 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
11 | elrspsn.3 | . . . . 5 ⊢ 𝐾 = (RSpan‘𝑅) | |
12 | rspval 21196 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
13 | 11, 12 | eqtri 2754 | . . . 4 ⊢ 𝐾 = (LSpan‘(ringLMod‘𝑅)) |
14 | 5, 6, 7, 10, 13 | ellspsn 20976 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝑋 ∈ (Base‘𝑅)) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋))) |
15 | 1, 4, 14 | syl2an2r 683 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋))) |
16 | rlmsca 21180 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
17 | 16 | adantr 479 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
18 | 17 | fveq2d 6897 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
19 | 3, 18 | eqtr2id 2779 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Base‘(Scalar‘(ringLMod‘𝑅))) = 𝐵) |
20 | 19 | rexeqdv 3316 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
21 | 15, 20 | bitrd 278 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {csn 4623 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 .rcmulr 17262 Scalarcsca 17264 ·𝑠 cvsca 17265 Ringcrg 20212 LModclmod 20832 LSpanclspn 20944 ringLModcrglmod 21146 RSpancrsp 21192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-sbg 18928 df-subg 19113 df-mgp 20114 df-ur 20161 df-ring 20214 df-subrg 20549 df-lmod 20834 df-lss 20905 df-lsp 20945 df-sra 21147 df-rgmod 21148 df-rsp 21194 |
This theorem is referenced by: dvdsrspss 33268 lsmsnpridl 33279 unitpidl1 33305 drngidl 33314 isprmidlc 33328 ssdifidlprm 33339 mxidlirredi 33352 mxidlirred 33353 1arithufdlem4 33428 ellcsrspsn 35482 |
Copyright terms: Public domain | W3C validator |