Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoco2 Structured version   Visualization version   GIF version

Theorem fucoco2 48925
Description: Composition in the source category is mapped to composition in the target. See also fucoco 48924. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco2.1 · = (comp‘𝑇)
fucoco2.2 = (comp‘𝑄)
fucoco2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoco2.x (𝜑𝑋𝑊)
fucoco2.y (𝜑𝑌𝑊)
fucoco2.z (𝜑𝑍𝑊)
fucoco2.j 𝐽 = (Hom ‘𝑇)
fucoco2.a (𝜑𝐴 ∈ (𝑋𝐽𝑌))
fucoco2.b (𝜑𝐵 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
fucoco2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))

Proof of Theorem fucoco2
StepHypRef Expression
1 fucoco2.a . . . 4 (𝜑𝐴 ∈ (𝑋𝐽𝑌))
2 fucoco2.t . . . . 5 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 48872 . . . . 5 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
4 fucoco2.j . . . . 5 𝐽 = (Hom ‘𝑇)
5 fucoco2.x . . . . . 6 (𝜑𝑋𝑊)
6 fucoco2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
75, 6eleqtrd 2843 . . . . 5 (𝜑𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 fucoco2.y . . . . . 6 (𝜑𝑌𝑊)
98, 6eleqtrd 2843 . . . . 5 (𝜑𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
102, 3, 4, 7, 9xpcfuchom 48874 . . . 4 (𝜑 → (𝑋𝐽𝑌) = (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
111, 10eleqtrd 2843 . . 3 (𝜑𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
12 xp1st 8054 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
1311, 12syl 17 . 2 (𝜑 → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
14 xp2nd 8055 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
1511, 14syl 17 . 2 (𝜑 → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
16 fucoco2.b . . . 4 (𝜑𝐵 ∈ (𝑌𝐽𝑍))
17 fucoco2.z . . . . . 6 (𝜑𝑍𝑊)
1817, 6eleqtrd 2843 . . . . 5 (𝜑𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
192, 3, 4, 9, 18xpcfuchom 48874 . . . 4 (𝜑 → (𝑌𝐽𝑍) = (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
2016, 19eleqtrd 2843 . . 3 (𝜑𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
21 xp1st 8054 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
2220, 21syl 17 . 2 (𝜑 → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
23 xp2nd 8055 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
2420, 23syl 17 . 2 (𝜑 → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
25 fucoco2.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 1st2nd2 8061 . . 3 (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
277, 26syl 17 . 2 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
28 1st2nd2 8061 . . 3 (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
299, 28syl 17 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
30 1st2nd2 8061 . . 3 (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
3118, 30syl 17 . 2 (𝜑𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
32 1st2nd2 8061 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3311, 32syl 17 . 2 (𝜑𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
34 1st2nd2 8061 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
3520, 34syl 17 . 2 (𝜑𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
36 fucoco2.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
37 fucoco2.2 . 2 = (comp‘𝑄)
38 fucoco2.1 . 2 · = (comp‘𝑇)
3913, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38fucoco 48924 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4640   × cxp 5691  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021  Hom chom 17318  compcco 17319   Func cfunc 17914   Nat cnat 18005   FuncCat cfuc 18006   ×c cxpc 18233  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-hom 17331  df-cco 17332  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920  df-nat 18007  df-fuc 18008  df-xpc 18237  df-fuco 48886
This theorem is referenced by:  fucofunc  48926
  Copyright terms: Public domain W3C validator