![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoco2 | Structured version Visualization version GIF version |
Description: Composition in the source category is mapped to composition in the target. See also fucoco 48924. (Contributed by Zhi Wang, 3-Oct-2025.) |
Ref | Expression |
---|---|
fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fucoco2.1 | ⊢ · = (comp‘𝑇) |
fucoco2.2 | ⊢ ∙ = (comp‘𝑄) |
fucoco2.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
fucoco2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
fucoco2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
fucoco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fucoco2.j | ⊢ 𝐽 = (Hom ‘𝑇) |
fucoco2.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) |
fucoco2.b | ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) |
Ref | Expression |
---|---|
fucoco2 | ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucoco2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) | |
2 | fucoco2.t | . . . . 5 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
3 | 2 | xpcfucbas 48872 | . . . . 5 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
4 | fucoco2.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝑇) | |
5 | fucoco2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
6 | fucoco2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
7 | 5, 6 | eleqtrd 2843 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
8 | fucoco2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
9 | 8, 6 | eleqtrd 2843 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
10 | 2, 3, 4, 7, 9 | xpcfuchom 48874 | . . . 4 ⊢ (𝜑 → (𝑋𝐽𝑌) = (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
11 | 1, 10 | eleqtrd 2843 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
12 | xp1st 8054 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) |
14 | xp2nd 8055 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) | |
15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) |
16 | fucoco2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) | |
17 | fucoco2.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
18 | 17, 6 | eleqtrd 2843 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
19 | 2, 3, 4, 9, 18 | xpcfuchom 48874 | . . . 4 ⊢ (𝜑 → (𝑌𝐽𝑍) = (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
20 | 16, 19 | eleqtrd 2843 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
21 | xp1st 8054 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) |
23 | xp2nd 8055 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) | |
24 | 20, 23 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) |
25 | fucoco2.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
26 | 1st2nd2 8061 | . . 3 ⊢ (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
27 | 7, 26 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
28 | 1st2nd2 8061 | . . 3 ⊢ (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
29 | 9, 28 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
30 | 1st2nd2 8061 | . . 3 ⊢ (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) | |
31 | 18, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) |
32 | 1st2nd2 8061 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
33 | 11, 32 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
34 | 1st2nd2 8061 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
35 | 20, 34 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
36 | fucoco2.q | . 2 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
37 | fucoco2.2 | . 2 ⊢ ∙ = (comp‘𝑄) | |
38 | fucoco2.1 | . 2 ⊢ · = (comp‘𝑇) | |
39 | 13, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38 | fucoco 48924 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 × cxp 5691 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 2nd c2nd 8021 Hom chom 17318 compcco 17319 Func cfunc 17914 Nat cnat 18005 FuncCat cfuc 18006 ×c cxpc 18233 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-slot 17225 df-ndx 17237 df-base 17255 df-hom 17331 df-cco 17332 df-cat 17722 df-cid 17723 df-func 17918 df-cofu 17920 df-nat 18007 df-fuc 18008 df-xpc 18237 df-fuco 48886 |
This theorem is referenced by: fucofunc 48926 |
Copyright terms: Public domain | W3C validator |