Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoco2 Structured version   Visualization version   GIF version

Theorem fucoco2 49347
Description: Composition in the source category is mapped to composition in the target. See also fucoco 49346. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco2.1 · = (comp‘𝑇)
fucoco2.2 = (comp‘𝑄)
fucoco2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoco2.x (𝜑𝑋𝑊)
fucoco2.y (𝜑𝑌𝑊)
fucoco2.z (𝜑𝑍𝑊)
fucoco2.j 𝐽 = (Hom ‘𝑇)
fucoco2.a (𝜑𝐴 ∈ (𝑋𝐽𝑌))
fucoco2.b (𝜑𝐵 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
fucoco2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))

Proof of Theorem fucoco2
StepHypRef Expression
1 fucoco2.a . . . 4 (𝜑𝐴 ∈ (𝑋𝐽𝑌))
2 fucoco2.t . . . . 5 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 49241 . . . . 5 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
4 fucoco2.j . . . . 5 𝐽 = (Hom ‘𝑇)
5 fucoco2.x . . . . . 6 (𝜑𝑋𝑊)
6 fucoco2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
75, 6eleqtrd 2830 . . . . 5 (𝜑𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 fucoco2.y . . . . . 6 (𝜑𝑌𝑊)
98, 6eleqtrd 2830 . . . . 5 (𝜑𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
102, 3, 4, 7, 9xpcfuchom 49243 . . . 4 (𝜑 → (𝑋𝐽𝑌) = (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
111, 10eleqtrd 2830 . . 3 (𝜑𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
12 xp1st 8000 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
1311, 12syl 17 . 2 (𝜑 → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
14 xp2nd 8001 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
1511, 14syl 17 . 2 (𝜑 → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
16 fucoco2.b . . . 4 (𝜑𝐵 ∈ (𝑌𝐽𝑍))
17 fucoco2.z . . . . . 6 (𝜑𝑍𝑊)
1817, 6eleqtrd 2830 . . . . 5 (𝜑𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
192, 3, 4, 9, 18xpcfuchom 49243 . . . 4 (𝜑 → (𝑌𝐽𝑍) = (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
2016, 19eleqtrd 2830 . . 3 (𝜑𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
21 xp1st 8000 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
2220, 21syl 17 . 2 (𝜑 → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
23 xp2nd 8001 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
2420, 23syl 17 . 2 (𝜑 → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
25 fucoco2.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 1st2nd2 8007 . . 3 (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
277, 26syl 17 . 2 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
28 1st2nd2 8007 . . 3 (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
299, 28syl 17 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
30 1st2nd2 8007 . . 3 (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
3118, 30syl 17 . 2 (𝜑𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
32 1st2nd2 8007 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3311, 32syl 17 . 2 (𝜑𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
34 1st2nd2 8007 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
3520, 34syl 17 . 2 (𝜑𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
36 fucoco2.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
37 fucoco2.2 . 2 = (comp‘𝑄)
38 fucoco2.1 . 2 · = (comp‘𝑇)
3913, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38fucoco 49346 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Hom chom 17231  compcco 17232   Func cfunc 17816   Nat cnat 17906   FuncCat cfuc 17907   ×c cxpc 18129  F cfuco 49305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-nat 17908  df-fuc 17909  df-xpc 18133  df-fuco 49306
This theorem is referenced by:  fucofunc  49348
  Copyright terms: Public domain W3C validator