Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoco2 Structured version   Visualization version   GIF version

Theorem fucoco2 49473
Description: Composition in the source category is mapped to composition in the target. See also fucoco 49472. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco2.1 · = (comp‘𝑇)
fucoco2.2 = (comp‘𝑄)
fucoco2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoco2.x (𝜑𝑋𝑊)
fucoco2.y (𝜑𝑌𝑊)
fucoco2.z (𝜑𝑍𝑊)
fucoco2.j 𝐽 = (Hom ‘𝑇)
fucoco2.a (𝜑𝐴 ∈ (𝑋𝐽𝑌))
fucoco2.b (𝜑𝐵 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
fucoco2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))

Proof of Theorem fucoco2
StepHypRef Expression
1 fucoco2.a . . . 4 (𝜑𝐴 ∈ (𝑋𝐽𝑌))
2 fucoco2.t . . . . 5 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 49367 . . . . 5 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
4 fucoco2.j . . . . 5 𝐽 = (Hom ‘𝑇)
5 fucoco2.x . . . . . 6 (𝜑𝑋𝑊)
6 fucoco2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
75, 6eleqtrd 2835 . . . . 5 (𝜑𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 fucoco2.y . . . . . 6 (𝜑𝑌𝑊)
98, 6eleqtrd 2835 . . . . 5 (𝜑𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
102, 3, 4, 7, 9xpcfuchom 49369 . . . 4 (𝜑 → (𝑋𝐽𝑌) = (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
111, 10eleqtrd 2835 . . 3 (𝜑𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
12 xp1st 7962 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
1311, 12syl 17 . 2 (𝜑 → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
14 xp2nd 7963 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
1511, 14syl 17 . 2 (𝜑 → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
16 fucoco2.b . . . 4 (𝜑𝐵 ∈ (𝑌𝐽𝑍))
17 fucoco2.z . . . . . 6 (𝜑𝑍𝑊)
1817, 6eleqtrd 2835 . . . . 5 (𝜑𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
192, 3, 4, 9, 18xpcfuchom 49369 . . . 4 (𝜑 → (𝑌𝐽𝑍) = (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
2016, 19eleqtrd 2835 . . 3 (𝜑𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
21 xp1st 7962 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
2220, 21syl 17 . 2 (𝜑 → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
23 xp2nd 7963 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
2420, 23syl 17 . 2 (𝜑 → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
25 fucoco2.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 1st2nd2 7969 . . 3 (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
277, 26syl 17 . 2 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
28 1st2nd2 7969 . . 3 (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
299, 28syl 17 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
30 1st2nd2 7969 . . 3 (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
3118, 30syl 17 . 2 (𝜑𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
32 1st2nd2 7969 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3311, 32syl 17 . 2 (𝜑𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
34 1st2nd2 7969 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
3520, 34syl 17 . 2 (𝜑𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
36 fucoco2.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
37 fucoco2.2 . 2 = (comp‘𝑄)
38 fucoco2.1 . 2 · = (comp‘𝑇)
3913, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38fucoco 49472 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Hom chom 17182  compcco 17183   Func cfunc 17771   Nat cnat 17861   FuncCat cfuc 17862   ×c cxpc 18084  F cfuco 49431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-struct 17068  df-slot 17103  df-ndx 17115  df-base 17131  df-hom 17195  df-cco 17196  df-cat 17584  df-cid 17585  df-func 17775  df-cofu 17777  df-nat 17863  df-fuc 17864  df-xpc 18088  df-fuco 49432
This theorem is referenced by:  fucofunc  49474
  Copyright terms: Public domain W3C validator