| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoco2 | Structured version Visualization version GIF version | ||
| Description: Composition in the source category is mapped to composition in the target. See also fucoco 49330. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fucoco2.1 | ⊢ · = (comp‘𝑇) |
| fucoco2.2 | ⊢ ∙ = (comp‘𝑄) |
| fucoco2.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| fucoco2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| fucoco2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| fucoco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fucoco2.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| fucoco2.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) |
| fucoco2.b | ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| fucoco2 | ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoco2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) | |
| 2 | fucoco2.t | . . . . 5 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
| 3 | 2 | xpcfucbas 49225 | . . . . 5 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
| 4 | fucoco2.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 5 | fucoco2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 6 | fucoco2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 7 | 5, 6 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 8 | fucoco2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 9 | 8, 6 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 10 | 2, 3, 4, 7, 9 | xpcfuchom 49227 | . . . 4 ⊢ (𝜑 → (𝑋𝐽𝑌) = (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
| 11 | 1, 10 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
| 12 | xp1st 7963 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) |
| 14 | xp2nd 7964 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) | |
| 15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) |
| 16 | fucoco2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) | |
| 17 | fucoco2.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 18 | 17, 6 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 19 | 2, 3, 4, 9, 18 | xpcfuchom 49227 | . . . 4 ⊢ (𝜑 → (𝑌𝐽𝑍) = (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
| 20 | 16, 19 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
| 21 | xp1st 7963 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) |
| 23 | xp2nd 7964 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) | |
| 24 | 20, 23 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) |
| 25 | fucoco2.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 26 | 1st2nd2 7970 | . . 3 ⊢ (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 27 | 7, 26 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 28 | 1st2nd2 7970 | . . 3 ⊢ (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
| 29 | 9, 28 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
| 30 | 1st2nd2 7970 | . . 3 ⊢ (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) | |
| 31 | 18, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) |
| 32 | 1st2nd2 7970 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 33 | 11, 32 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 34 | 1st2nd2 7970 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 35 | 20, 34 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
| 36 | fucoco2.q | . 2 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
| 37 | fucoco2.2 | . 2 ⊢ ∙ = (comp‘𝑄) | |
| 38 | fucoco2.1 | . 2 ⊢ · = (comp‘𝑇) | |
| 39 | 13, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38 | fucoco 49330 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 × cxp 5621 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Hom chom 17190 compcco 17191 Func cfunc 17779 Nat cnat 17869 FuncCat cfuc 17870 ×c cxpc 18092 ∘F cfuco 49289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-func 17783 df-cofu 17785 df-nat 17871 df-fuc 17872 df-xpc 18096 df-fuco 49290 |
| This theorem is referenced by: fucofunc 49332 |
| Copyright terms: Public domain | W3C validator |