Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoco2 Structured version   Visualization version   GIF version

Theorem fucoco2 49369
Description: Composition in the source category is mapped to composition in the target. See also fucoco 49368. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco2.1 · = (comp‘𝑇)
fucoco2.2 = (comp‘𝑄)
fucoco2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoco2.x (𝜑𝑋𝑊)
fucoco2.y (𝜑𝑌𝑊)
fucoco2.z (𝜑𝑍𝑊)
fucoco2.j 𝐽 = (Hom ‘𝑇)
fucoco2.a (𝜑𝐴 ∈ (𝑋𝐽𝑌))
fucoco2.b (𝜑𝐵 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
fucoco2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))

Proof of Theorem fucoco2
StepHypRef Expression
1 fucoco2.a . . . 4 (𝜑𝐴 ∈ (𝑋𝐽𝑌))
2 fucoco2.t . . . . 5 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 49263 . . . . 5 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
4 fucoco2.j . . . . 5 𝐽 = (Hom ‘𝑇)
5 fucoco2.x . . . . . 6 (𝜑𝑋𝑊)
6 fucoco2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
75, 6eleqtrd 2831 . . . . 5 (𝜑𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 fucoco2.y . . . . . 6 (𝜑𝑌𝑊)
98, 6eleqtrd 2831 . . . . 5 (𝜑𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
102, 3, 4, 7, 9xpcfuchom 49265 . . . 4 (𝜑 → (𝑋𝐽𝑌) = (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
111, 10eleqtrd 2831 . . 3 (𝜑𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
12 xp1st 7948 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
1311, 12syl 17 . 2 (𝜑 → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
14 xp2nd 7949 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
1511, 14syl 17 . 2 (𝜑 → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
16 fucoco2.b . . . 4 (𝜑𝐵 ∈ (𝑌𝐽𝑍))
17 fucoco2.z . . . . . 6 (𝜑𝑍𝑊)
1817, 6eleqtrd 2831 . . . . 5 (𝜑𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
192, 3, 4, 9, 18xpcfuchom 49265 . . . 4 (𝜑 → (𝑌𝐽𝑍) = (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
2016, 19eleqtrd 2831 . . 3 (𝜑𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
21 xp1st 7948 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
2220, 21syl 17 . 2 (𝜑 → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
23 xp2nd 7949 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
2420, 23syl 17 . 2 (𝜑 → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
25 fucoco2.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 1st2nd2 7955 . . 3 (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
277, 26syl 17 . 2 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
28 1st2nd2 7955 . . 3 (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
299, 28syl 17 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
30 1st2nd2 7955 . . 3 (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
3118, 30syl 17 . 2 (𝜑𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
32 1st2nd2 7955 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3311, 32syl 17 . 2 (𝜑𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
34 1st2nd2 7955 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
3520, 34syl 17 . 2 (𝜑𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
36 fucoco2.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
37 fucoco2.2 . 2 = (comp‘𝑄)
38 fucoco2.1 . 2 · = (comp‘𝑇)
3913, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38fucoco 49368 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cop 4580   × cxp 5612  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Hom chom 17164  compcco 17165   Func cfunc 17753   Nat cnat 17843   FuncCat cfuc 17844   ×c cxpc 18066  F cfuco 49327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-hom 17177  df-cco 17178  df-cat 17566  df-cid 17567  df-func 17757  df-cofu 17759  df-nat 17845  df-fuc 17846  df-xpc 18070  df-fuco 49328
This theorem is referenced by:  fucofunc  49370
  Copyright terms: Public domain W3C validator