| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoco2 | Structured version Visualization version GIF version | ||
| Description: Composition in the source category is mapped to composition in the target. See also fucoco 49252. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fucoco2.1 | ⊢ · = (comp‘𝑇) |
| fucoco2.2 | ⊢ ∙ = (comp‘𝑄) |
| fucoco2.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| fucoco2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| fucoco2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| fucoco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fucoco2.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| fucoco2.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) |
| fucoco2.b | ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| fucoco2 | ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoco2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) | |
| 2 | fucoco2.t | . . . . 5 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
| 3 | 2 | xpcfucbas 49153 | . . . . 5 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
| 4 | fucoco2.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 5 | fucoco2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 6 | fucoco2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 7 | 5, 6 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 8 | fucoco2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 9 | 8, 6 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 10 | 2, 3, 4, 7, 9 | xpcfuchom 49155 | . . . 4 ⊢ (𝜑 → (𝑋𝐽𝑌) = (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
| 11 | 1, 10 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
| 12 | xp1st 8009 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) |
| 14 | xp2nd 8010 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) | |
| 15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) |
| 16 | fucoco2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) | |
| 17 | fucoco2.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 18 | 17, 6 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 19 | 2, 3, 4, 9, 18 | xpcfuchom 49155 | . . . 4 ⊢ (𝜑 → (𝑌𝐽𝑍) = (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
| 20 | 16, 19 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
| 21 | xp1st 8009 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) |
| 23 | xp2nd 8010 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) | |
| 24 | 20, 23 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) |
| 25 | fucoco2.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 26 | 1st2nd2 8016 | . . 3 ⊢ (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 27 | 7, 26 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 28 | 1st2nd2 8016 | . . 3 ⊢ (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
| 29 | 9, 28 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
| 30 | 1st2nd2 8016 | . . 3 ⊢ (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) | |
| 31 | 18, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) |
| 32 | 1st2nd2 8016 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 33 | 11, 32 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 34 | 1st2nd2 8016 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 35 | 20, 34 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
| 36 | fucoco2.q | . 2 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
| 37 | fucoco2.2 | . 2 ⊢ ∙ = (comp‘𝑄) | |
| 38 | fucoco2.1 | . 2 ⊢ · = (comp‘𝑇) | |
| 39 | 13, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38 | fucoco 49252 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4603 × cxp 5644 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 Hom chom 17237 compcco 17238 Func cfunc 17822 Nat cnat 17912 FuncCat cfuc 17913 ×c cxpc 18135 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 df-nat 17914 df-fuc 17915 df-xpc 18139 df-fuco 49212 |
| This theorem is referenced by: fucofunc 49254 |
| Copyright terms: Public domain | W3C validator |