Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoco2 Structured version   Visualization version   GIF version

Theorem fucoco2 49013
Description: Composition in the source category is mapped to composition in the target. See also fucoco 49012. (Contributed by Zhi Wang, 3-Oct-2025.)
Hypotheses
Ref Expression
fucoco2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoco2.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco2.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco2.1 · = (comp‘𝑇)
fucoco2.2 = (comp‘𝑄)
fucoco2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoco2.x (𝜑𝑋𝑊)
fucoco2.y (𝜑𝑌𝑊)
fucoco2.z (𝜑𝑍𝑊)
fucoco2.j 𝐽 = (Hom ‘𝑇)
fucoco2.a (𝜑𝐴 ∈ (𝑋𝐽𝑌))
fucoco2.b (𝜑𝐵 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
fucoco2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))

Proof of Theorem fucoco2
StepHypRef Expression
1 fucoco2.a . . . 4 (𝜑𝐴 ∈ (𝑋𝐽𝑌))
2 fucoco2.t . . . . 5 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
32xpcfucbas 48913 . . . . 5 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
4 fucoco2.j . . . . 5 𝐽 = (Hom ‘𝑇)
5 fucoco2.x . . . . . 6 (𝜑𝑋𝑊)
6 fucoco2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
75, 6eleqtrd 2835 . . . . 5 (𝜑𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 fucoco2.y . . . . . 6 (𝜑𝑌𝑊)
98, 6eleqtrd 2835 . . . . 5 (𝜑𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
102, 3, 4, 7, 9xpcfuchom 48915 . . . 4 (𝜑 → (𝑋𝐽𝑌) = (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
111, 10eleqtrd 2835 . . 3 (𝜑𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))))
12 xp1st 8029 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
1311, 12syl 17 . 2 (𝜑 → (1st𝐴) ∈ ((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)))
14 xp2nd 8030 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
1511, 14syl 17 . 2 (𝜑 → (2nd𝐴) ∈ ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌)))
16 fucoco2.b . . . 4 (𝜑𝐵 ∈ (𝑌𝐽𝑍))
17 fucoco2.z . . . . . 6 (𝜑𝑍𝑊)
1817, 6eleqtrd 2835 . . . . 5 (𝜑𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
192, 3, 4, 9, 18xpcfuchom 48915 . . . 4 (𝜑 → (𝑌𝐽𝑍) = (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
2016, 19eleqtrd 2835 . . 3 (𝜑𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))))
21 xp1st 8029 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
2220, 21syl 17 . 2 (𝜑 → (1st𝐵) ∈ ((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)))
23 xp2nd 8030 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
2420, 23syl 17 . 2 (𝜑 → (2nd𝐵) ∈ ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍)))
25 fucoco2.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
26 1st2nd2 8036 . . 3 (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
277, 26syl 17 . 2 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
28 1st2nd2 8036 . . 3 (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
299, 28syl 17 . 2 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
30 1st2nd2 8036 . . 3 (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
3118, 30syl 17 . 2 (𝜑𝑍 = ⟨(1st𝑍), (2nd𝑍)⟩)
32 1st2nd2 8036 . . 3 (𝐴 ∈ (((1st𝑋)(𝐷 Nat 𝐸)(1st𝑌)) × ((2nd𝑋)(𝐶 Nat 𝐷)(2nd𝑌))) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3311, 32syl 17 . 2 (𝜑𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
34 1st2nd2 8036 . . 3 (𝐵 ∈ (((1st𝑌)(𝐷 Nat 𝐸)(1st𝑍)) × ((2nd𝑌)(𝐶 Nat 𝐷)(2nd𝑍))) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
3520, 34syl 17 . 2 (𝜑𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
36 fucoco2.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
37 fucoco2.2 . 2 = (comp‘𝑄)
38 fucoco2.1 . 2 · = (comp‘𝑇)
3913, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38fucoco 49012 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4614   × cxp 5665  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Hom chom 17285  compcco 17286   Func cfunc 17871   Nat cnat 17961   FuncCat cfuc 17962   ×c cxpc 18184  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-cofu 17877  df-nat 17963  df-fuc 17964  df-xpc 18188  df-fuco 48972
This theorem is referenced by:  fucofunc  49014
  Copyright terms: Public domain W3C validator