| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoco2 | Structured version Visualization version GIF version | ||
| Description: Composition in the source category is mapped to composition in the target. See also fucoco 49368. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fucoco2.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| fucoco2.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| fucoco2.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fucoco2.1 | ⊢ · = (comp‘𝑇) |
| fucoco2.2 | ⊢ ∙ = (comp‘𝑄) |
| fucoco2.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| fucoco2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| fucoco2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| fucoco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fucoco2.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| fucoco2.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) |
| fucoco2.b | ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| fucoco2 | ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoco2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) | |
| 2 | fucoco2.t | . . . . 5 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
| 3 | 2 | xpcfucbas 49263 | . . . . 5 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇) |
| 4 | fucoco2.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 5 | fucoco2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 6 | fucoco2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 7 | 5, 6 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 8 | fucoco2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 9 | 8, 6 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 10 | 2, 3, 4, 7, 9 | xpcfuchom 49265 | . . . 4 ⊢ (𝜑 → (𝑋𝐽𝑌) = (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
| 11 | 1, 10 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌)))) |
| 12 | xp1st 7948 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐴) ∈ ((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌))) |
| 14 | xp2nd 7949 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) | |
| 15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐴) ∈ ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) |
| 16 | fucoco2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) | |
| 17 | fucoco2.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 18 | 17, 6 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 19 | 2, 3, 4, 9, 18 | xpcfuchom 49265 | . . . 4 ⊢ (𝜑 → (𝑌𝐽𝑍) = (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
| 20 | 16, 19 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍)))) |
| 21 | xp1st 7948 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐵) ∈ ((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍))) |
| 23 | xp2nd 7949 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) | |
| 24 | 20, 23 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝐵) ∈ ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) |
| 25 | fucoco2.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 26 | 1st2nd2 7955 | . . 3 ⊢ (𝑋 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 27 | 7, 26 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 28 | 1st2nd2 7955 | . . 3 ⊢ (𝑌 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
| 29 | 9, 28 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
| 30 | 1st2nd2 7955 | . . 3 ⊢ (𝑍 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) | |
| 31 | 18, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑍 = 〈(1st ‘𝑍), (2nd ‘𝑍)〉) |
| 32 | 1st2nd2 7955 | . . 3 ⊢ (𝐴 ∈ (((1st ‘𝑋)(𝐷 Nat 𝐸)(1st ‘𝑌)) × ((2nd ‘𝑋)(𝐶 Nat 𝐷)(2nd ‘𝑌))) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 33 | 11, 32 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 34 | 1st2nd2 7955 | . . 3 ⊢ (𝐵 ∈ (((1st ‘𝑌)(𝐷 Nat 𝐸)(1st ‘𝑍)) × ((2nd ‘𝑌)(𝐶 Nat 𝐷)(2nd ‘𝑍))) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
| 35 | 20, 34 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
| 36 | fucoco2.q | . 2 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
| 37 | fucoco2.2 | . 2 ⊢ ∙ = (comp‘𝑄) | |
| 38 | fucoco2.1 | . 2 ⊢ · = (comp‘𝑇) | |
| 39 | 13, 15, 22, 24, 25, 27, 29, 31, 33, 35, 36, 37, 2, 38 | fucoco 49368 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 〈cop 4580 × cxp 5612 ‘cfv 6477 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Hom chom 17164 compcco 17165 Func cfunc 17753 Nat cnat 17843 FuncCat cfuc 17844 ×c cxpc 18066 ∘F cfuco 49327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-hom 17177 df-cco 17178 df-cat 17566 df-cid 17567 df-func 17757 df-cofu 17759 df-nat 17845 df-fuc 17846 df-xpc 18070 df-fuco 49328 |
| This theorem is referenced by: fucofunc 49370 |
| Copyright terms: Public domain | W3C validator |