Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptun | Structured version Visualization version GIF version |
Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsummptun.b | ⊢ 𝐵 = (Base‘𝑊) |
gsummptun.p | ⊢ + = (+g‘𝑊) |
gsummptun.w | ⊢ (𝜑 → 𝑊 ∈ CMnd) |
gsummptun.a | ⊢ (𝜑 → (𝐴 ∪ 𝐶) ∈ Fin) |
gsummptun.d | ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) |
gsummptun.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → 𝐷 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptun | ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ (𝐴 ∪ 𝐶) ↦ 𝐷)) = ((𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐷)) + (𝑊 Σg (𝑥 ∈ 𝐶 ↦ 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptun.b | . 2 ⊢ 𝐵 = (Base‘𝑊) | |
2 | gsummptun.p | . 2 ⊢ + = (+g‘𝑊) | |
3 | gsummptun.w | . 2 ⊢ (𝜑 → 𝑊 ∈ CMnd) | |
4 | gsummptun.a | . 2 ⊢ (𝜑 → (𝐴 ∪ 𝐶) ∈ Fin) | |
5 | gsummptun.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → 𝐷 ∈ 𝐵) | |
6 | gsummptun.d | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) | |
7 | eqidd 2738 | . 2 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐴 ∪ 𝐶)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | gsummptfidmsplit 19626 | 1 ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ (𝐴 ∪ 𝐶) ↦ 𝐷)) = ((𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐷)) + (𝑊 Σg (𝑥 ∈ 𝐶 ↦ 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∪ cun 3900 ∩ cin 3901 ∅c0 4274 ↦ cmpt 5180 ‘cfv 6484 (class class class)co 7342 Fincfn 8809 Basecbs 17010 +gcplusg 17060 Σg cgsu 17249 CMndccmn 19482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-seq 13828 df-hash 14151 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-0g 17250 df-gsum 17251 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-cntz 19020 df-cmn 19484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |