| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumws4 | Structured version Visualization version GIF version | ||
| Description: Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
| Ref | Expression |
|---|---|
| gsumws4.0 | ⊢ 𝐵 = (Base‘𝐺) |
| gsumws4.1 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| gsumws4 | ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1s3 14943 | . . . 4 ⊢ 〈“𝑆𝑇𝑈𝑉”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 〈“𝑆𝑇𝑈𝑉”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉)) |
| 3 | 2 | oveq2d 7421 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉))) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝐺 ∈ Mnd) | |
| 5 | simprl 770 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑆 ∈ 𝐵) | |
| 6 | 5 | s1cld 14621 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 〈“𝑆”〉 ∈ Word 𝐵) |
| 7 | simprrl 780 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑇 ∈ 𝐵) | |
| 8 | simprrl 780 | . . . . 5 ⊢ ((𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵))) → 𝑈 ∈ 𝐵) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑈 ∈ 𝐵) |
| 10 | simprrr 781 | . . . . 5 ⊢ ((𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵))) → 𝑉 ∈ 𝐵) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑉 ∈ 𝐵) |
| 12 | 7, 9, 11 | s3cld 14891 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 〈“𝑇𝑈𝑉”〉 ∈ Word 𝐵) |
| 13 | gsumws4.0 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | gsumws4.1 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 15 | 13, 14 | gsumccat 18819 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 〈“𝑆”〉 ∈ Word 𝐵 ∧ 〈“𝑇𝑈𝑉”〉 ∈ Word 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈𝑉”〉))) |
| 16 | 4, 6, 12, 15 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈𝑉”〉))) |
| 17 | 13 | gsumws1 18816 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| 18 | 17 | ad2antrl 728 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| 19 | 13, 14 | gsumws3 44220 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵))) → (𝐺 Σg 〈“𝑇𝑈𝑉”〉) = (𝑇 + (𝑈 + 𝑉))) |
| 20 | 19 | adantrl 716 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑇𝑈𝑉”〉) = (𝑇 + (𝑈 + 𝑉))) |
| 21 | 18, 20 | oveq12d 7423 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈𝑉”〉)) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) |
| 22 | 3, 16, 21 | 3eqtrd 2774 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Word cword 14531 ++ cconcat 14588 〈“cs1 14613 〈“cs3 14861 〈“cs4 14862 Basecbs 17228 +gcplusg 17271 Σg cgsu 17454 Mndcmnd 18712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-s4 14869 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 |
| This theorem is referenced by: amgm4d 44224 |
| Copyright terms: Public domain | W3C validator |