| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumws4 | Structured version Visualization version GIF version | ||
| Description: Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
| Ref | Expression |
|---|---|
| gsumws4.0 | ⊢ 𝐵 = (Base‘𝐺) |
| gsumws4.1 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| gsumws4 | ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1s3 14831 | . . . 4 ⊢ 〈“𝑆𝑇𝑈𝑉”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 〈“𝑆𝑇𝑈𝑉”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉)) |
| 3 | 2 | oveq2d 7365 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉))) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝐺 ∈ Mnd) | |
| 5 | simprl 770 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑆 ∈ 𝐵) | |
| 6 | 5 | s1cld 14510 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 〈“𝑆”〉 ∈ Word 𝐵) |
| 7 | simprrl 780 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑇 ∈ 𝐵) | |
| 8 | simprrl 780 | . . . . 5 ⊢ ((𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵))) → 𝑈 ∈ 𝐵) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑈 ∈ 𝐵) |
| 10 | simprrr 781 | . . . . 5 ⊢ ((𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵))) → 𝑉 ∈ 𝐵) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 𝑉 ∈ 𝐵) |
| 12 | 7, 9, 11 | s3cld 14779 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → 〈“𝑇𝑈𝑉”〉 ∈ Word 𝐵) |
| 13 | gsumws4.0 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | gsumws4.1 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 15 | 13, 14 | gsumccat 18715 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 〈“𝑆”〉 ∈ Word 𝐵 ∧ 〈“𝑇𝑈𝑉”〉 ∈ Word 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈𝑉”〉))) |
| 16 | 4, 6, 12, 15 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈𝑉”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈𝑉”〉))) |
| 17 | 13 | gsumws1 18712 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| 18 | 17 | ad2antrl 728 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| 19 | 13, 14 | gsumws3 44169 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵))) → (𝐺 Σg 〈“𝑇𝑈𝑉”〉) = (𝑇 + (𝑈 + 𝑉))) |
| 20 | 19 | adantrl 716 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑇𝑈𝑉”〉) = (𝑇 + (𝑈 + 𝑉))) |
| 21 | 18, 20 | oveq12d 7367 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈𝑉”〉)) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) |
| 22 | 3, 16, 21 | 3eqtrd 2768 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Word cword 14420 ++ cconcat 14477 〈“cs1 14502 〈“cs3 14749 〈“cs4 14750 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 Mndcmnd 18608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-s4 14757 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 |
| This theorem is referenced by: amgm4d 44173 |
| Copyright terms: Public domain | W3C validator |