Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipeq0 | Structured version Visualization version GIF version |
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
ip0l.o | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ipeq0 | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
4 | ip0l.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | eqid 2737 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | ip0l.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20590 | . . . . 5 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) |
8 | 7 | simp3bi 1149 | . . . 4 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))) |
9 | simp2 1139 | . . . . 5 ⊢ (((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) | |
10 | 9 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) |
12 | oveq12 7222 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
13 | 12 | anidms 570 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
14 | 13 | eqeq1d 2739 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍)) |
15 | eqeq1 2741 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0 )) | |
16 | 14, 15 | imbi12d 348 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 ))) |
17 | 16 | rspccva 3536 | . . 3 ⊢ ((∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 )) |
18 | 11, 17 | sylan 583 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 )) |
19 | 2, 3, 1, 6, 4 | ip0l 20598 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
20 | oveq1 7220 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴)) | |
21 | 20 | eqeq1d 2739 | . . 3 ⊢ (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍)) |
22 | 19, 21 | syl5ibrcom 250 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍)) |
23 | 18, 22 | impbid 215 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 *𝑟cstv 16804 Scalarcsca 16805 ·𝑖cip 16807 0gc0g 16944 *-Ringcsr 19880 LMHom clmhm 20056 LVecclvec 20139 ringLModcrglmod 20206 PreHilcphl 20586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-sca 16818 df-vsca 16819 df-ip 16820 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-ghm 18620 df-lmod 19901 df-lmhm 20059 df-lvec 20140 df-sra 20209 df-rgmod 20210 df-phl 20588 |
This theorem is referenced by: ip2eq 20615 phlssphl 20621 ocvin 20636 lsmcss 20654 obsne0 20687 cphipeq0 24101 ipcau2 24131 tcphcph 24134 |
Copyright terms: Public domain | W3C validator |