| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipeq0 | Structured version Visualization version GIF version | ||
| Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
| ip0l.o | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ipeq0 | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 4 | ip0l.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 5 | eqid 2733 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 6 | ip0l.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | isphl 21574 | . . . . 5 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) |
| 8 | 7 | simp3bi 1147 | . . . 4 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))) |
| 9 | simp2 1137 | . . . . 5 ⊢ (((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) | |
| 10 | 9 | ralimi 3070 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) |
| 12 | oveq12 7364 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
| 13 | 12 | anidms 566 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
| 14 | 13 | eqeq1d 2735 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍)) |
| 15 | eqeq1 2737 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0 )) | |
| 16 | 14, 15 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 ))) |
| 17 | 16 | rspccva 3572 | . . 3 ⊢ ((∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 )) |
| 18 | 11, 17 | sylan 580 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 )) |
| 19 | 2, 3, 1, 6, 4 | ip0l 21582 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
| 20 | oveq1 7362 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴)) | |
| 21 | 20 | eqeq1d 2735 | . . 3 ⊢ (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍)) |
| 22 | 19, 21 | syl5ibrcom 247 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍)) |
| 23 | 18, 22 | impbid 212 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 *𝑟cstv 17170 Scalarcsca 17171 ·𝑖cip 17173 0gc0g 17350 *-Ringcsr 20762 LMHom clmhm 20962 LVecclvec 21045 ringLModcrglmod 21115 PreHilcphl 21570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-sca 17184 df-vsca 17185 df-ip 17186 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-ghm 19133 df-lmod 20804 df-lmhm 20965 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-phl 21572 |
| This theorem is referenced by: ip2eq 21599 phlssphl 21605 ocvin 21620 lsmcss 21638 obsne0 21671 cphipeq0 25151 ipcau2 25181 tcphcph 25184 |
| Copyright terms: Public domain | W3C validator |