MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipeq0 Structured version   Visualization version   GIF version

Theorem ipeq0 21570
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ipeq0 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))

Proof of Theorem ipeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 ip0l.o . . . . . 6 0 = (0g𝑊)
5 eqid 2731 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
6 ip0l.z . . . . . 6 𝑍 = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 21560 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1147 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp2 1137 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
109ralimi 3069 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
12 oveq12 7350 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1312anidms 566 . . . . . 6 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1413eqeq1d 2733 . . . . 5 (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍))
15 eqeq1 2735 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 0𝐴 = 0 ))
1614, 15imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍𝐴 = 0 )))
1716rspccva 3571 . . 3 ((∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
1811, 17sylan 580 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
192, 3, 1, 6, 4ip0l 21568 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
20 oveq1 7348 . . . 4 (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴))
2120eqeq1d 2733 . . 3 (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍))
2219, 21syl5ibrcom 247 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍))
2318, 22impbid 212 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cmpt 5167  cfv 6476  (class class class)co 7341  Basecbs 17115  *𝑟cstv 17158  Scalarcsca 17159  ·𝑖cip 17161  0gc0g 17338  *-Ringcsr 20748   LMHom clmhm 20948  LVecclvec 21031  ringLModcrglmod 21101  PreHilcphl 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-sca 17172  df-vsca 17173  df-ip 17174  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-ghm 19120  df-lmod 20790  df-lmhm 20951  df-lvec 21032  df-sra 21102  df-rgmod 21103  df-phl 21558
This theorem is referenced by:  ip2eq  21585  phlssphl  21591  ocvin  21606  lsmcss  21624  obsne0  21657  cphipeq0  25126  ipcau2  25156  tcphcph  25159
  Copyright terms: Public domain W3C validator