| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipeq0 | Structured version Visualization version GIF version | ||
| Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
| ip0l.o | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ipeq0 | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 4 | ip0l.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 6 | ip0l.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | isphl 21513 | . . . . 5 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) |
| 8 | 7 | simp3bi 1147 | . . . 4 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))) |
| 9 | simp2 1137 | . . . . 5 ⊢ (((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) | |
| 10 | 9 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑊 ∈ PreHil → ∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 )) |
| 12 | oveq12 7378 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴)) | |
| 13 | 12 | anidms 566 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴)) |
| 14 | 13 | eqeq1d 2731 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍)) |
| 15 | eqeq1 2733 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0 )) | |
| 16 | 14, 15 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 ))) |
| 17 | 16 | rspccva 3584 | . . 3 ⊢ ((∀𝑥 ∈ 𝑉 ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 )) |
| 18 | 11, 17 | sylan 580 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 → 𝐴 = 0 )) |
| 19 | 2, 3, 1, 6, 4 | ip0l 21521 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
| 20 | oveq1 7376 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴)) | |
| 21 | 20 | eqeq1d 2731 | . . 3 ⊢ (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍)) |
| 22 | 19, 21 | syl5ibrcom 247 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍)) |
| 23 | 18, 22 | impbid 212 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 *𝑟cstv 17198 Scalarcsca 17199 ·𝑖cip 17201 0gc0g 17378 *-Ringcsr 20723 LMHom clmhm 20902 LVecclvec 20985 ringLModcrglmod 21055 PreHilcphl 21509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-ghm 19121 df-lmod 20744 df-lmhm 20905 df-lvec 20986 df-sra 21056 df-rgmod 21057 df-phl 21511 |
| This theorem is referenced by: ip2eq 21538 phlssphl 21544 ocvin 21559 lsmcss 21577 obsne0 21610 cphipeq0 25080 ipcau2 25110 tcphcph 25113 |
| Copyright terms: Public domain | W3C validator |