MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipeq0 Structured version   Visualization version   GIF version

Theorem ipeq0 21623
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ipeq0 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))

Proof of Theorem ipeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 ip0l.o . . . . . 6 0 = (0g𝑊)
5 eqid 2734 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
6 ip0l.z . . . . . 6 𝑍 = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 21613 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1147 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp2 1137 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
109ralimi 3072 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
12 oveq12 7423 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1312anidms 566 . . . . . 6 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1413eqeq1d 2736 . . . . 5 (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍))
15 eqeq1 2738 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 0𝐴 = 0 ))
1614, 15imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍𝐴 = 0 )))
1716rspccva 3605 . . 3 ((∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
1811, 17sylan 580 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
192, 3, 1, 6, 4ip0l 21621 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
20 oveq1 7421 . . . 4 (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴))
2120eqeq1d 2736 . . 3 (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍))
2219, 21syl5ibrcom 247 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍))
2318, 22impbid 212 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  cmpt 5207  cfv 6542  (class class class)co 7414  Basecbs 17230  *𝑟cstv 17279  Scalarcsca 17280  ·𝑖cip 17282  0gc0g 17460  *-Ringcsr 20812   LMHom clmhm 20991  LVecclvec 21074  ringLModcrglmod 21144  PreHilcphl 21609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17290  df-sca 17293  df-vsca 17294  df-ip 17295  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-ghm 19205  df-lmod 20833  df-lmhm 20994  df-lvec 21075  df-sra 21145  df-rgmod 21146  df-phl 21611
This theorem is referenced by:  ip2eq  21638  phlssphl  21644  ocvin  21659  lsmcss  21677  obsne0  21712  cphipeq0  25193  ipcau2  25223  tcphcph  25226
  Copyright terms: Public domain W3C validator