MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipeq0 Structured version   Visualization version   GIF version

Theorem ipeq0 20600
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ipeq0 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))

Proof of Theorem ipeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 ip0l.o . . . . . 6 0 = (0g𝑊)
5 eqid 2737 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
6 ip0l.z . . . . . 6 𝑍 = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 20590 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1149 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp2 1139 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
109ralimi 3083 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
12 oveq12 7222 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1312anidms 570 . . . . . 6 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1413eqeq1d 2739 . . . . 5 (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍))
15 eqeq1 2741 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 0𝐴 = 0 ))
1614, 15imbi12d 348 . . . 4 (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍𝐴 = 0 )))
1716rspccva 3536 . . 3 ((∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
1811, 17sylan 583 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
192, 3, 1, 6, 4ip0l 20598 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
20 oveq1 7220 . . . 4 (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴))
2120eqeq1d 2739 . . 3 (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍))
2219, 21syl5ibrcom 250 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍))
2318, 22impbid 215 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  cmpt 5135  cfv 6380  (class class class)co 7213  Basecbs 16760  *𝑟cstv 16804  Scalarcsca 16805  ·𝑖cip 16807  0gc0g 16944  *-Ringcsr 19880   LMHom clmhm 20056  LVecclvec 20139  ringLModcrglmod 20206  PreHilcphl 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-sca 16818  df-vsca 16819  df-ip 16820  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-ghm 18620  df-lmod 19901  df-lmhm 20059  df-lvec 20140  df-sra 20209  df-rgmod 20210  df-phl 20588
This theorem is referenced by:  ip2eq  20615  phlssphl  20621  ocvin  20636  lsmcss  20654  obsne0  20687  cphipeq0  24101  ipcau2  24131  tcphcph  24134
  Copyright terms: Public domain W3C validator