MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodclim2 Structured version   Visualization version   GIF version

Theorem iprodclim2 15353
Description: A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodclim.1 𝑍 = (ℤ𝑀)
iprodclim.2 (𝜑𝑀 ∈ ℤ)
iprodclim.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprodclim.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iprodclim.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
iprodclim2 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑛,𝑦   𝑘,𝐹,𝑛   𝜑,𝑘,𝑦   𝑘,𝑀,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑛,𝑦   𝑛,𝐹,𝑦   𝑛,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem iprodclim2
StepHypRef Expression
1 iprodclim.1 . . . 4 𝑍 = (ℤ𝑀)
2 iprodclim.3 . . . 4 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
3 iprodclim.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
4 iprodclim.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
53, 4eqeltrd 2916 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
61, 2, 5ntrivcvg 15253 . . 3 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
7 climdm 14911 . . 3 (seq𝑀( · , 𝐹) ∈ dom ⇝ ↔ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))
86, 7sylib 221 . 2 (𝜑 → seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))
9 iprodclim.2 . . 3 (𝜑𝑀 ∈ ℤ)
101, 9, 2, 3, 4iprod 15292 . 2 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , 𝐹)))
118, 10breqtrrd 5080 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  wrex 3134   class class class wbr 5052  dom cdm 5542  cfv 6343  cc 10533  0cc0 10535   · cmul 10540  cz 11978  cuz 12240  seqcseq 13373  cli 14841  cprod 15259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260
This theorem is referenced by:  iprodrecl  15356  iprodmul  15357
  Copyright terms: Public domain W3C validator