Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem5 Structured version   Visualization version   GIF version

Theorem knoppndvlem5 35882
Description: Lemma for knoppndv 35900. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem5.t ๐‘‡ = (๐‘ฅ โˆˆ โ„ โ†ฆ (absโ€˜((โŒŠโ€˜(๐‘ฅ + (1 / 2))) โˆ’ ๐‘ฅ)))
knoppndvlem5.f ๐น = (๐‘ฆ โˆˆ โ„ โ†ฆ (๐‘› โˆˆ โ„•0 โ†ฆ ((๐ถโ†‘๐‘›) ยท (๐‘‡โ€˜(((2 ยท ๐‘)โ†‘๐‘›) ยท ๐‘ฆ)))))
knoppndvlem5.a (๐œ‘ โ†’ ๐ด โˆˆ โ„)
knoppndvlem5.c (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
knoppndvlem5.n (๐œ‘ โ†’ ๐‘ โˆˆ โ„•)
Assertion
Ref Expression
knoppndvlem5 (๐œ‘ โ†’ ฮฃ๐‘– โˆˆ (0...๐ฝ)((๐นโ€˜๐ด)โ€˜๐‘–) โˆˆ โ„)
Distinct variable groups:   ๐ด,๐‘›,๐‘ฆ   ๐‘ฅ,๐ด   ๐ถ,๐‘›,๐‘ฆ   ๐‘–,๐ฝ,๐‘›,๐‘ฆ   ๐‘›,๐‘,๐‘ฆ   ๐‘ฅ,๐‘   ๐‘‡,๐‘›,๐‘ฆ   ๐œ‘,๐‘–,๐‘›,๐‘ฆ   ๐‘ฅ,๐‘–
Allowed substitution hints:   ๐œ‘(๐‘ฅ)   ๐ด(๐‘–)   ๐ถ(๐‘ฅ,๐‘–)   ๐‘‡(๐‘ฅ,๐‘–)   ๐น(๐‘ฅ,๐‘ฆ,๐‘–,๐‘›)   ๐ฝ(๐‘ฅ)   ๐‘(๐‘–)

Proof of Theorem knoppndvlem5
StepHypRef Expression
1 fzfid 13935 . 2 (๐œ‘ โ†’ (0...๐ฝ) โˆˆ Fin)
2 knoppndvlem5.t . . 3 ๐‘‡ = (๐‘ฅ โˆˆ โ„ โ†ฆ (absโ€˜((โŒŠโ€˜(๐‘ฅ + (1 / 2))) โˆ’ ๐‘ฅ)))
3 knoppndvlem5.f . . 3 ๐น = (๐‘ฆ โˆˆ โ„ โ†ฆ (๐‘› โˆˆ โ„•0 โ†ฆ ((๐ถโ†‘๐‘›) ยท (๐‘‡โ€˜(((2 ยท ๐‘)โ†‘๐‘›) ยท ๐‘ฆ)))))
4 knoppndvlem5.n . . . 4 (๐œ‘ โ†’ ๐‘ โˆˆ โ„•)
54adantr 480 . . 3 ((๐œ‘ โˆง ๐‘– โˆˆ (0...๐ฝ)) โ†’ ๐‘ โˆˆ โ„•)
6 knoppndvlem5.c . . . 4 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
76adantr 480 . . 3 ((๐œ‘ โˆง ๐‘– โˆˆ (0...๐ฝ)) โ†’ ๐ถ โˆˆ โ„)
8 knoppndvlem5.a . . . 4 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
98adantr 480 . . 3 ((๐œ‘ โˆง ๐‘– โˆˆ (0...๐ฝ)) โ†’ ๐ด โˆˆ โ„)
10 elfznn0 13591 . . . 4 (๐‘– โˆˆ (0...๐ฝ) โ†’ ๐‘– โˆˆ โ„•0)
1110adantl 481 . . 3 ((๐œ‘ โˆง ๐‘– โˆˆ (0...๐ฝ)) โ†’ ๐‘– โˆˆ โ„•0)
122, 3, 5, 7, 9, 11knoppcnlem3 35861 . 2 ((๐œ‘ โˆง ๐‘– โˆˆ (0...๐ฝ)) โ†’ ((๐นโ€˜๐ด)โ€˜๐‘–) โˆˆ โ„)
131, 12fsumrecl 15677 1 (๐œ‘ โ†’ ฮฃ๐‘– โˆˆ (0...๐ฝ)((๐นโ€˜๐ด)โ€˜๐‘–) โˆˆ โ„)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098   โ†ฆ cmpt 5221  โ€˜cfv 6533  (class class class)co 7401  โ„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ยท cmul 11111   โˆ’ cmin 11441   / cdiv 11868  โ„•cn 12209  2c2 12264  โ„•0cn0 12469  ...cfz 13481  โŒŠcfl 13752  โ†‘cexp 14024  abscabs 15178  ฮฃcsu 15629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630
This theorem is referenced by:  knoppndvlem6  35883  knoppndvlem14  35891  knoppndvlem15  35892
  Copyright terms: Public domain W3C validator