| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmeprodgcdi | Structured version Visualization version GIF version | ||
| Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmeprodgcdi.1 | ⊢ 𝑀 ∈ ℕ |
| lcmeprodgcdi.2 | ⊢ 𝑁 ∈ ℕ |
| lcmeprodgcdi.3 | ⊢ 𝐺 ∈ ℕ |
| lcmeprodgcdi.4 | ⊢ 𝐻 ∈ ℕ |
| lcmeprodgcdi.5 | ⊢ (𝑀 gcd 𝑁) = 𝐺 |
| lcmeprodgcdi.6 | ⊢ (𝐺 · 𝐻) = 𝐴 |
| lcmeprodgcdi.7 | ⊢ (𝑀 · 𝑁) = 𝐴 |
| Ref | Expression |
|---|---|
| lcmeprodgcdi | ⊢ (𝑀 lcm 𝑁) = 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmeprodgcdi.5 | . . . 4 ⊢ (𝑀 gcd 𝑁) = 𝐺 | |
| 2 | 1 | oveq2i 7363 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺) |
| 3 | lcmeprodgcdi.1 | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
| 4 | lcmeprodgcdi.2 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 5 | lcmgcdnn 16524 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . 5 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁) |
| 7 | lcmeprodgcdi.6 | . . . . . 6 ⊢ (𝐺 · 𝐻) = 𝐴 | |
| 8 | lcmeprodgcdi.7 | . . . . . 6 ⊢ (𝑀 · 𝑁) = 𝐴 | |
| 9 | 7, 8 | eqtr4i 2759 | . . . . 5 ⊢ (𝐺 · 𝐻) = (𝑀 · 𝑁) |
| 10 | 6, 9 | eqtr4i 2759 | . . . 4 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻) |
| 11 | lcmeprodgcdi.3 | . . . . 5 ⊢ 𝐺 ∈ ℕ | |
| 12 | lcmeprodgcdi.4 | . . . . 5 ⊢ 𝐻 ∈ ℕ | |
| 13 | 11, 12 | mulcomnni 42100 | . . . 4 ⊢ (𝐺 · 𝐻) = (𝐻 · 𝐺) |
| 14 | 10, 13 | eqtri 2756 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺) |
| 15 | 2, 14 | eqtr3i 2758 | . 2 ⊢ ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) |
| 16 | 3 | nnzi 12502 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
| 17 | 4 | nnzi 12502 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ |
| 18 | 16, 17 | pm3.2i 470 | . . . . . 6 ⊢ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) |
| 19 | lcmcl 16514 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (𝑀 lcm 𝑁) ∈ ℕ0 |
| 21 | 20 | nn0cni 12400 | . . . 4 ⊢ (𝑀 lcm 𝑁) ∈ ℂ |
| 22 | 12 | nncni 12142 | . . . 4 ⊢ 𝐻 ∈ ℂ |
| 23 | 11 | nncni 12142 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
| 24 | 11 | nnne0i 12172 | . . . . 5 ⊢ 𝐺 ≠ 0 |
| 25 | 23, 24 | pm3.2i 470 | . . . 4 ⊢ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0) |
| 26 | 21, 22, 25 | 3pm3.2i 1340 | . . 3 ⊢ ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) |
| 27 | mulcan2 11762 | . . 3 ⊢ (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻) |
| 29 | 15, 28 | mpbi 230 | 1 ⊢ (𝑀 lcm 𝑁) = 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 · cmul 11018 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 gcd cgcd 16407 lcm clcm 16501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-lcm 16503 |
| This theorem is referenced by: 12lcm5e60 42121 60lcm6e60 42122 60lcm7e420 42123 420lcm8e840 42124 |
| Copyright terms: Public domain | W3C validator |