| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmeprodgcdi | Structured version Visualization version GIF version | ||
| Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmeprodgcdi.1 | ⊢ 𝑀 ∈ ℕ |
| lcmeprodgcdi.2 | ⊢ 𝑁 ∈ ℕ |
| lcmeprodgcdi.3 | ⊢ 𝐺 ∈ ℕ |
| lcmeprodgcdi.4 | ⊢ 𝐻 ∈ ℕ |
| lcmeprodgcdi.5 | ⊢ (𝑀 gcd 𝑁) = 𝐺 |
| lcmeprodgcdi.6 | ⊢ (𝐺 · 𝐻) = 𝐴 |
| lcmeprodgcdi.7 | ⊢ (𝑀 · 𝑁) = 𝐴 |
| Ref | Expression |
|---|---|
| lcmeprodgcdi | ⊢ (𝑀 lcm 𝑁) = 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmeprodgcdi.5 | . . . 4 ⊢ (𝑀 gcd 𝑁) = 𝐺 | |
| 2 | 1 | oveq2i 7414 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺) |
| 3 | lcmeprodgcdi.1 | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
| 4 | lcmeprodgcdi.2 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 5 | lcmgcdnn 16628 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . 5 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁) |
| 7 | lcmeprodgcdi.6 | . . . . . 6 ⊢ (𝐺 · 𝐻) = 𝐴 | |
| 8 | lcmeprodgcdi.7 | . . . . . 6 ⊢ (𝑀 · 𝑁) = 𝐴 | |
| 9 | 7, 8 | eqtr4i 2761 | . . . . 5 ⊢ (𝐺 · 𝐻) = (𝑀 · 𝑁) |
| 10 | 6, 9 | eqtr4i 2761 | . . . 4 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻) |
| 11 | lcmeprodgcdi.3 | . . . . 5 ⊢ 𝐺 ∈ ℕ | |
| 12 | lcmeprodgcdi.4 | . . . . 5 ⊢ 𝐻 ∈ ℕ | |
| 13 | 11, 12 | mulcomnni 41946 | . . . 4 ⊢ (𝐺 · 𝐻) = (𝐻 · 𝐺) |
| 14 | 10, 13 | eqtri 2758 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺) |
| 15 | 2, 14 | eqtr3i 2760 | . 2 ⊢ ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) |
| 16 | 3 | nnzi 12614 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
| 17 | 4 | nnzi 12614 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ |
| 18 | 16, 17 | pm3.2i 470 | . . . . . 6 ⊢ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) |
| 19 | lcmcl 16618 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (𝑀 lcm 𝑁) ∈ ℕ0 |
| 21 | 20 | nn0cni 12511 | . . . 4 ⊢ (𝑀 lcm 𝑁) ∈ ℂ |
| 22 | 12 | nncni 12248 | . . . 4 ⊢ 𝐻 ∈ ℂ |
| 23 | 11 | nncni 12248 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
| 24 | 11 | nnne0i 12278 | . . . . 5 ⊢ 𝐺 ≠ 0 |
| 25 | 23, 24 | pm3.2i 470 | . . . 4 ⊢ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0) |
| 26 | 21, 22, 25 | 3pm3.2i 1340 | . . 3 ⊢ ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) |
| 27 | mulcan2 11873 | . . 3 ⊢ (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻) |
| 29 | 15, 28 | mpbi 230 | 1 ⊢ (𝑀 lcm 𝑁) = 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7403 ℂcc 11125 0cc0 11127 · cmul 11132 ℕcn 12238 ℕ0cn0 12499 ℤcz 12586 gcd cgcd 16511 lcm clcm 16605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-gcd 16512 df-lcm 16607 |
| This theorem is referenced by: 12lcm5e60 41967 60lcm6e60 41968 60lcm7e420 41969 420lcm8e840 41970 |
| Copyright terms: Public domain | W3C validator |