Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmeprodgcdi Structured version   Visualization version   GIF version

Theorem lcmeprodgcdi 42002
Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.)
Hypotheses
Ref Expression
lcmeprodgcdi.1 𝑀 ∈ ℕ
lcmeprodgcdi.2 𝑁 ∈ ℕ
lcmeprodgcdi.3 𝐺 ∈ ℕ
lcmeprodgcdi.4 𝐻 ∈ ℕ
lcmeprodgcdi.5 (𝑀 gcd 𝑁) = 𝐺
lcmeprodgcdi.6 (𝐺 · 𝐻) = 𝐴
lcmeprodgcdi.7 (𝑀 · 𝑁) = 𝐴
Assertion
Ref Expression
lcmeprodgcdi (𝑀 lcm 𝑁) = 𝐻

Proof of Theorem lcmeprodgcdi
StepHypRef Expression
1 lcmeprodgcdi.5 . . . 4 (𝑀 gcd 𝑁) = 𝐺
21oveq2i 7401 . . 3 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺)
3 lcmeprodgcdi.1 . . . . . 6 𝑀 ∈ ℕ
4 lcmeprodgcdi.2 . . . . . 6 𝑁 ∈ ℕ
5 lcmgcdnn 16588 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁))
63, 4, 5mp2an 692 . . . . 5 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)
7 lcmeprodgcdi.6 . . . . . 6 (𝐺 · 𝐻) = 𝐴
8 lcmeprodgcdi.7 . . . . . 6 (𝑀 · 𝑁) = 𝐴
97, 8eqtr4i 2756 . . . . 5 (𝐺 · 𝐻) = (𝑀 · 𝑁)
106, 9eqtr4i 2756 . . . 4 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻)
11 lcmeprodgcdi.3 . . . . 5 𝐺 ∈ ℕ
12 lcmeprodgcdi.4 . . . . 5 𝐻 ∈ ℕ
1311, 12mulcomnni 41982 . . . 4 (𝐺 · 𝐻) = (𝐻 · 𝐺)
1410, 13eqtri 2753 . . 3 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺)
152, 14eqtr3i 2755 . 2 ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺)
163nnzi 12564 . . . . . . 7 𝑀 ∈ ℤ
174nnzi 12564 . . . . . . 7 𝑁 ∈ ℤ
1816, 17pm3.2i 470 . . . . . 6 (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)
19 lcmcl 16578 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
2018, 19ax-mp 5 . . . . 5 (𝑀 lcm 𝑁) ∈ ℕ0
2120nn0cni 12461 . . . 4 (𝑀 lcm 𝑁) ∈ ℂ
2212nncni 12203 . . . 4 𝐻 ∈ ℂ
2311nncni 12203 . . . . 5 𝐺 ∈ ℂ
2411nnne0i 12233 . . . . 5 𝐺 ≠ 0
2523, 24pm3.2i 470 . . . 4 (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)
2621, 22, 253pm3.2i 1340 . . 3 ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0))
27 mulcan2 11823 . . 3 (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻))
2826, 27ax-mp 5 . 2 (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)
2915, 28mpbi 230 1 (𝑀 lcm 𝑁) = 𝐻
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080  cn 12193  0cn0 12449  cz 12536   gcd cgcd 16471   lcm clcm 16565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-lcm 16567
This theorem is referenced by:  12lcm5e60  42003  60lcm6e60  42004  60lcm7e420  42005  420lcm8e840  42006
  Copyright terms: Public domain W3C validator