Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmeprodgcdi Structured version   Visualization version   GIF version

Theorem lcmeprodgcdi 40215
Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.)
Hypotheses
Ref Expression
lcmeprodgcdi.1 𝑀 ∈ ℕ
lcmeprodgcdi.2 𝑁 ∈ ℕ
lcmeprodgcdi.3 𝐺 ∈ ℕ
lcmeprodgcdi.4 𝐻 ∈ ℕ
lcmeprodgcdi.5 (𝑀 gcd 𝑁) = 𝐺
lcmeprodgcdi.6 (𝐺 · 𝐻) = 𝐴
lcmeprodgcdi.7 (𝑀 · 𝑁) = 𝐴
Assertion
Ref Expression
lcmeprodgcdi (𝑀 lcm 𝑁) = 𝐻

Proof of Theorem lcmeprodgcdi
StepHypRef Expression
1 lcmeprodgcdi.5 . . . 4 (𝑀 gcd 𝑁) = 𝐺
21oveq2i 7318 . . 3 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺)
3 lcmeprodgcdi.1 . . . . . 6 𝑀 ∈ ℕ
4 lcmeprodgcdi.2 . . . . . 6 𝑁 ∈ ℕ
5 lcmgcdnn 16365 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁))
63, 4, 5mp2an 690 . . . . 5 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)
7 lcmeprodgcdi.6 . . . . . 6 (𝐺 · 𝐻) = 𝐴
8 lcmeprodgcdi.7 . . . . . 6 (𝑀 · 𝑁) = 𝐴
97, 8eqtr4i 2767 . . . . 5 (𝐺 · 𝐻) = (𝑀 · 𝑁)
106, 9eqtr4i 2767 . . . 4 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻)
11 lcmeprodgcdi.3 . . . . 5 𝐺 ∈ ℕ
12 lcmeprodgcdi.4 . . . . 5 𝐻 ∈ ℕ
1311, 12mulcomnni 40196 . . . 4 (𝐺 · 𝐻) = (𝐻 · 𝐺)
1410, 13eqtri 2764 . . 3 ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺)
152, 14eqtr3i 2766 . 2 ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺)
163nnzi 12394 . . . . . . 7 𝑀 ∈ ℤ
174nnzi 12394 . . . . . . 7 𝑁 ∈ ℤ
1816, 17pm3.2i 472 . . . . . 6 (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)
19 lcmcl 16355 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
2018, 19ax-mp 5 . . . . 5 (𝑀 lcm 𝑁) ∈ ℕ0
2120nn0cni 12295 . . . 4 (𝑀 lcm 𝑁) ∈ ℂ
2212nncni 12033 . . . 4 𝐻 ∈ ℂ
2311nncni 12033 . . . . 5 𝐺 ∈ ℂ
2411nnne0i 12063 . . . . 5 𝐺 ≠ 0
2523, 24pm3.2i 472 . . . 4 (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)
2621, 22, 253pm3.2i 1339 . . 3 ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0))
27 mulcan2 11663 . . 3 (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻))
2826, 27ax-mp 5 . 2 (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)
2915, 28mpbi 229 1 (𝑀 lcm 𝑁) = 𝐻
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  (class class class)co 7307  cc 10919  0cc0 10921   · cmul 10926  cn 12023  0cn0 12283  cz 12369   gcd cgcd 16250   lcm clcm 16342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9249  df-inf 9250  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-rp 12781  df-fl 13562  df-mod 13640  df-seq 13772  df-exp 13833  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-dvds 16013  df-gcd 16251  df-lcm 16344
This theorem is referenced by:  12lcm5e60  40216  60lcm6e60  40217  60lcm7e420  40218  420lcm8e840  40219
  Copyright terms: Public domain W3C validator