Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmeprodgcdi | Structured version Visualization version GIF version |
Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcmeprodgcdi.1 | ⊢ 𝑀 ∈ ℕ |
lcmeprodgcdi.2 | ⊢ 𝑁 ∈ ℕ |
lcmeprodgcdi.3 | ⊢ 𝐺 ∈ ℕ |
lcmeprodgcdi.4 | ⊢ 𝐻 ∈ ℕ |
lcmeprodgcdi.5 | ⊢ (𝑀 gcd 𝑁) = 𝐺 |
lcmeprodgcdi.6 | ⊢ (𝐺 · 𝐻) = 𝐴 |
lcmeprodgcdi.7 | ⊢ (𝑀 · 𝑁) = 𝐴 |
Ref | Expression |
---|---|
lcmeprodgcdi | ⊢ (𝑀 lcm 𝑁) = 𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmeprodgcdi.5 | . . . 4 ⊢ (𝑀 gcd 𝑁) = 𝐺 | |
2 | 1 | oveq2i 7318 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺) |
3 | lcmeprodgcdi.1 | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
4 | lcmeprodgcdi.2 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
5 | lcmgcdnn 16365 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | |
6 | 3, 4, 5 | mp2an 690 | . . . . 5 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁) |
7 | lcmeprodgcdi.6 | . . . . . 6 ⊢ (𝐺 · 𝐻) = 𝐴 | |
8 | lcmeprodgcdi.7 | . . . . . 6 ⊢ (𝑀 · 𝑁) = 𝐴 | |
9 | 7, 8 | eqtr4i 2767 | . . . . 5 ⊢ (𝐺 · 𝐻) = (𝑀 · 𝑁) |
10 | 6, 9 | eqtr4i 2767 | . . . 4 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻) |
11 | lcmeprodgcdi.3 | . . . . 5 ⊢ 𝐺 ∈ ℕ | |
12 | lcmeprodgcdi.4 | . . . . 5 ⊢ 𝐻 ∈ ℕ | |
13 | 11, 12 | mulcomnni 40196 | . . . 4 ⊢ (𝐺 · 𝐻) = (𝐻 · 𝐺) |
14 | 10, 13 | eqtri 2764 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺) |
15 | 2, 14 | eqtr3i 2766 | . 2 ⊢ ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) |
16 | 3 | nnzi 12394 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
17 | 4 | nnzi 12394 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ |
18 | 16, 17 | pm3.2i 472 | . . . . . 6 ⊢ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) |
19 | lcmcl 16355 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (𝑀 lcm 𝑁) ∈ ℕ0 |
21 | 20 | nn0cni 12295 | . . . 4 ⊢ (𝑀 lcm 𝑁) ∈ ℂ |
22 | 12 | nncni 12033 | . . . 4 ⊢ 𝐻 ∈ ℂ |
23 | 11 | nncni 12033 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
24 | 11 | nnne0i 12063 | . . . . 5 ⊢ 𝐺 ≠ 0 |
25 | 23, 24 | pm3.2i 472 | . . . 4 ⊢ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0) |
26 | 21, 22, 25 | 3pm3.2i 1339 | . . 3 ⊢ ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) |
27 | mulcan2 11663 | . . 3 ⊢ (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻) |
29 | 15, 28 | mpbi 229 | 1 ⊢ (𝑀 lcm 𝑁) = 𝐻 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10919 0cc0 10921 · cmul 10926 ℕcn 12023 ℕ0cn0 12283 ℤcz 12369 gcd cgcd 16250 lcm clcm 16342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-fl 13562 df-mod 13640 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-dvds 16013 df-gcd 16251 df-lcm 16344 |
This theorem is referenced by: 12lcm5e60 40216 60lcm6e60 40217 60lcm7e420 40218 420lcm8e840 40219 |
Copyright terms: Public domain | W3C validator |