Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmeprodgcdi | Structured version Visualization version GIF version |
Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcmeprodgcdi.1 | ⊢ 𝑀 ∈ ℕ |
lcmeprodgcdi.2 | ⊢ 𝑁 ∈ ℕ |
lcmeprodgcdi.3 | ⊢ 𝐺 ∈ ℕ |
lcmeprodgcdi.4 | ⊢ 𝐻 ∈ ℕ |
lcmeprodgcdi.5 | ⊢ (𝑀 gcd 𝑁) = 𝐺 |
lcmeprodgcdi.6 | ⊢ (𝐺 · 𝐻) = 𝐴 |
lcmeprodgcdi.7 | ⊢ (𝑀 · 𝑁) = 𝐴 |
Ref | Expression |
---|---|
lcmeprodgcdi | ⊢ (𝑀 lcm 𝑁) = 𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmeprodgcdi.5 | . . . 4 ⊢ (𝑀 gcd 𝑁) = 𝐺 | |
2 | 1 | oveq2i 7279 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺) |
3 | lcmeprodgcdi.1 | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
4 | lcmeprodgcdi.2 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
5 | lcmgcdnn 16297 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | |
6 | 3, 4, 5 | mp2an 688 | . . . . 5 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁) |
7 | lcmeprodgcdi.6 | . . . . . 6 ⊢ (𝐺 · 𝐻) = 𝐴 | |
8 | lcmeprodgcdi.7 | . . . . . 6 ⊢ (𝑀 · 𝑁) = 𝐴 | |
9 | 7, 8 | eqtr4i 2770 | . . . . 5 ⊢ (𝐺 · 𝐻) = (𝑀 · 𝑁) |
10 | 6, 9 | eqtr4i 2770 | . . . 4 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻) |
11 | lcmeprodgcdi.3 | . . . . 5 ⊢ 𝐺 ∈ ℕ | |
12 | lcmeprodgcdi.4 | . . . . 5 ⊢ 𝐻 ∈ ℕ | |
13 | 11, 12 | mulcomnni 39976 | . . . 4 ⊢ (𝐺 · 𝐻) = (𝐻 · 𝐺) |
14 | 10, 13 | eqtri 2767 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺) |
15 | 2, 14 | eqtr3i 2769 | . 2 ⊢ ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) |
16 | 3 | nnzi 12327 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
17 | 4 | nnzi 12327 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ |
18 | 16, 17 | pm3.2i 470 | . . . . . 6 ⊢ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) |
19 | lcmcl 16287 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (𝑀 lcm 𝑁) ∈ ℕ0 |
21 | 20 | nn0cni 12228 | . . . 4 ⊢ (𝑀 lcm 𝑁) ∈ ℂ |
22 | 12 | nncni 11966 | . . . 4 ⊢ 𝐻 ∈ ℂ |
23 | 11 | nncni 11966 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
24 | 11 | nnne0i 11996 | . . . . 5 ⊢ 𝐺 ≠ 0 |
25 | 23, 24 | pm3.2i 470 | . . . 4 ⊢ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0) |
26 | 21, 22, 25 | 3pm3.2i 1337 | . . 3 ⊢ ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) |
27 | mulcan2 11596 | . . 3 ⊢ (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻) |
29 | 15, 28 | mpbi 229 | 1 ⊢ (𝑀 lcm 𝑁) = 𝐻 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 (class class class)co 7268 ℂcc 10853 0cc0 10855 · cmul 10860 ℕcn 11956 ℕ0cn0 12216 ℤcz 12302 gcd cgcd 16182 lcm clcm 16274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-dvds 15945 df-gcd 16183 df-lcm 16276 |
This theorem is referenced by: 12lcm5e60 39996 60lcm6e60 39997 60lcm7e420 39998 420lcm8e840 39999 |
Copyright terms: Public domain | W3C validator |