| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmeprodgcdi | Structured version Visualization version GIF version | ||
| Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmeprodgcdi.1 | ⊢ 𝑀 ∈ ℕ |
| lcmeprodgcdi.2 | ⊢ 𝑁 ∈ ℕ |
| lcmeprodgcdi.3 | ⊢ 𝐺 ∈ ℕ |
| lcmeprodgcdi.4 | ⊢ 𝐻 ∈ ℕ |
| lcmeprodgcdi.5 | ⊢ (𝑀 gcd 𝑁) = 𝐺 |
| lcmeprodgcdi.6 | ⊢ (𝐺 · 𝐻) = 𝐴 |
| lcmeprodgcdi.7 | ⊢ (𝑀 · 𝑁) = 𝐴 |
| Ref | Expression |
|---|---|
| lcmeprodgcdi | ⊢ (𝑀 lcm 𝑁) = 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmeprodgcdi.5 | . . . 4 ⊢ (𝑀 gcd 𝑁) = 𝐺 | |
| 2 | 1 | oveq2i 7401 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = ((𝑀 lcm 𝑁) · 𝐺) |
| 3 | lcmeprodgcdi.1 | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
| 4 | lcmeprodgcdi.2 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 5 | lcmgcdnn 16588 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . 5 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁) |
| 7 | lcmeprodgcdi.6 | . . . . . 6 ⊢ (𝐺 · 𝐻) = 𝐴 | |
| 8 | lcmeprodgcdi.7 | . . . . . 6 ⊢ (𝑀 · 𝑁) = 𝐴 | |
| 9 | 7, 8 | eqtr4i 2756 | . . . . 5 ⊢ (𝐺 · 𝐻) = (𝑀 · 𝑁) |
| 10 | 6, 9 | eqtr4i 2756 | . . . 4 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐺 · 𝐻) |
| 11 | lcmeprodgcdi.3 | . . . . 5 ⊢ 𝐺 ∈ ℕ | |
| 12 | lcmeprodgcdi.4 | . . . . 5 ⊢ 𝐻 ∈ ℕ | |
| 13 | 11, 12 | mulcomnni 41982 | . . . 4 ⊢ (𝐺 · 𝐻) = (𝐻 · 𝐺) |
| 14 | 10, 13 | eqtri 2753 | . . 3 ⊢ ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝐻 · 𝐺) |
| 15 | 2, 14 | eqtr3i 2755 | . 2 ⊢ ((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) |
| 16 | 3 | nnzi 12564 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
| 17 | 4 | nnzi 12564 | . . . . . . 7 ⊢ 𝑁 ∈ ℤ |
| 18 | 16, 17 | pm3.2i 470 | . . . . . 6 ⊢ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) |
| 19 | lcmcl 16578 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (𝑀 lcm 𝑁) ∈ ℕ0 |
| 21 | 20 | nn0cni 12461 | . . . 4 ⊢ (𝑀 lcm 𝑁) ∈ ℂ |
| 22 | 12 | nncni 12203 | . . . 4 ⊢ 𝐻 ∈ ℂ |
| 23 | 11 | nncni 12203 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
| 24 | 11 | nnne0i 12233 | . . . . 5 ⊢ 𝐺 ≠ 0 |
| 25 | 23, 24 | pm3.2i 470 | . . . 4 ⊢ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0) |
| 26 | 21, 22, 25 | 3pm3.2i 1340 | . . 3 ⊢ ((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) |
| 27 | mulcan2 11823 | . . 3 ⊢ (((𝑀 lcm 𝑁) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ (𝐺 ∈ ℂ ∧ 𝐺 ≠ 0)) → (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻)) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (((𝑀 lcm 𝑁) · 𝐺) = (𝐻 · 𝐺) ↔ (𝑀 lcm 𝑁) = 𝐻) |
| 29 | 15, 28 | mpbi 230 | 1 ⊢ (𝑀 lcm 𝑁) = 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 gcd cgcd 16471 lcm clcm 16565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-lcm 16567 |
| This theorem is referenced by: 12lcm5e60 42003 60lcm6e60 42004 60lcm7e420 42005 420lcm8e840 42006 |
| Copyright terms: Public domain | W3C validator |