Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcmgcdnn | Structured version Visualization version GIF version |
Description: The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
lcmgcdnn | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12447 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 12447 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | lcmgcd 16409 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | |
4 | 1, 2, 3 | syl2an 597 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) |
5 | nnmulcl 12102 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℕ) | |
6 | 5 | nnnn0d 12398 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℕ0) |
7 | nn0re 12347 | . . . 4 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → (𝑀 · 𝑁) ∈ ℝ) | |
8 | nn0ge0 12363 | . . . 4 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → 0 ≤ (𝑀 · 𝑁)) | |
9 | 7, 8 | jca 513 | . . 3 ⊢ ((𝑀 · 𝑁) ∈ ℕ0 → ((𝑀 · 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 · 𝑁))) |
10 | absid 15107 | . . 3 ⊢ (((𝑀 · 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 · 𝑁)) → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) | |
11 | 6, 9, 10 | 3syl 18 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁)) |
12 | 4, 11 | eqtrd 2777 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 ℝcr 10975 0cc0 10976 · cmul 10981 ≤ cle 11115 ℕcn 12078 ℕ0cn0 12338 ℤcz 12424 abscabs 15044 gcd cgcd 16300 lcm clcm 16390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fl 13617 df-mod 13695 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 df-gcd 16301 df-lcm 16392 |
This theorem is referenced by: 3lcm2e6woprm 16417 6lcm4e12 16418 3lcm2e6 16533 ex-lcm 29109 lcmeprodgcdi 40320 |
Copyright terms: Public domain | W3C validator |