Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr4 Structured version   Visualization version   GIF version

Theorem eqlkr4 39148
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
eqlkr4.s 𝑆 = (Scalar‘𝑊)
eqlkr4.r 𝑅 = (Base‘𝑆)
eqlkr4.f 𝐹 = (LFnl‘𝑊)
eqlkr4.k 𝐾 = (LKer‘𝑊)
eqlkr4.d 𝐷 = (LDual‘𝑊)
eqlkr4.t · = ( ·𝑠𝐷)
eqlkr4.w (𝜑𝑊 ∈ LVec)
eqlkr4.g (𝜑𝐺𝐹)
eqlkr4.h (𝜑𝐻𝐹)
eqlkr4.e (𝜑 → (𝐾𝐺) = (𝐾𝐻))
Assertion
Ref Expression
eqlkr4 (𝜑 → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
Distinct variable groups:   𝐹,𝑟   𝐺,𝑟   𝐻,𝑟   𝐾,𝑟   𝑅,𝑟   𝑆,𝑟   𝑊,𝑟   𝜑,𝑟
Allowed substitution hints:   𝐷(𝑟)   · (𝑟)

Proof of Theorem eqlkr4
StepHypRef Expression
1 eqlkr4.w . . 3 (𝜑𝑊 ∈ LVec)
2 eqlkr4.g . . 3 (𝜑𝐺𝐹)
3 eqlkr4.h . . 3 (𝜑𝐻𝐹)
4 eqlkr4.e . . 3 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
5 eqlkr4.s . . . 4 𝑆 = (Scalar‘𝑊)
6 eqlkr4.r . . . 4 𝑅 = (Base‘𝑆)
7 eqid 2729 . . . 4 (.r𝑆) = (.r𝑆)
8 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
9 eqlkr4.f . . . 4 𝐹 = (LFnl‘𝑊)
10 eqlkr4.k . . . 4 𝐾 = (LKer‘𝑊)
115, 6, 7, 8, 9, 10eqlkr2 39083 . . 3 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅 𝐻 = (𝐺f (.r𝑆)((Base‘𝑊) × {𝑟})))
121, 2, 3, 4, 11syl121anc 1377 . 2 (𝜑 → ∃𝑟𝑅 𝐻 = (𝐺f (.r𝑆)((Base‘𝑊) × {𝑟})))
13 eqlkr4.d . . . . 5 𝐷 = (LDual‘𝑊)
14 eqlkr4.t . . . . 5 · = ( ·𝑠𝐷)
151adantr 480 . . . . 5 ((𝜑𝑟𝑅) → 𝑊 ∈ LVec)
16 simpr 484 . . . . 5 ((𝜑𝑟𝑅) → 𝑟𝑅)
172adantr 480 . . . . 5 ((𝜑𝑟𝑅) → 𝐺𝐹)
189, 8, 5, 6, 7, 13, 14, 15, 16, 17ldualvs 39120 . . . 4 ((𝜑𝑟𝑅) → (𝑟 · 𝐺) = (𝐺f (.r𝑆)((Base‘𝑊) × {𝑟})))
1918eqeq2d 2740 . . 3 ((𝜑𝑟𝑅) → (𝐻 = (𝑟 · 𝐺) ↔ 𝐻 = (𝐺f (.r𝑆)((Base‘𝑊) × {𝑟}))))
2019rexbidva 3151 . 2 (𝜑 → (∃𝑟𝑅 𝐻 = (𝑟 · 𝐺) ↔ ∃𝑟𝑅 𝐻 = (𝐺f (.r𝑆)((Base‘𝑊) × {𝑟}))))
2112, 20mpbird 257 1 (𝜑 → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4577   × cxp 5617  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  LVecclvec 21006  LFnlclfn 39040  LKerclk 39068  LDualcld 39106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lvec 21007  df-lfl 39041  df-lkr 39069  df-ldual 39107
This theorem is referenced by:  lkrss2N  39152  lcfrlem16  41541  mapdrvallem2  41628
  Copyright terms: Public domain W3C validator