![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrss | Structured version Visualization version GIF version |
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
lkrss.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lkrss.k | ⊢ 𝐾 = (Base‘𝑅) |
lkrss.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrss.l | ⊢ 𝐿 = (LKer‘𝑊) |
lkrss.d | ⊢ 𝐷 = (LDual‘𝑊) |
lkrss.s | ⊢ · = ( ·𝑠 ‘𝐷) |
lkrss.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrss.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lkrss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
Ref | Expression |
---|---|
lkrss | ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lkrss.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | lkrss.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
4 | eqid 2727 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | lkrss.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | lkrss.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
7 | lkrss.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
8 | lkrss.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
9 | lkrss.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lkrscss 38559 | . 2 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
11 | lkrss.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
12 | lkrss.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
13 | 5, 1, 2, 3, 4, 11, 12, 7, 9, 8 | ldualvs 38598 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
14 | 13 | fveq2d 6895 | . 2 ⊢ (𝜑 → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘(𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
15 | 10, 14 | sseqtrrd 4019 | 1 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 {csn 4624 × cxp 5670 ‘cfv 6542 (class class class)co 7414 ∘f cof 7677 Basecbs 17173 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 LVecclvec 20980 LFnlclfn 38518 LKerclk 38546 LDualcld 38584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-sbg 18888 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-drng 20619 df-lmod 20738 df-lss 20809 df-lvec 20981 df-lfl 38519 df-lkr 38547 df-ldual 38585 |
This theorem is referenced by: lkrss2N 38630 lkreqN 38631 lclkrslem1 40999 lcfrlem2 41005 |
Copyright terms: Public domain | W3C validator |