Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrss Structured version   Visualization version   GIF version

Theorem lkrss 36825
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
lkrss.r 𝑅 = (Scalar‘𝑊)
lkrss.k 𝐾 = (Base‘𝑅)
lkrss.f 𝐹 = (LFnl‘𝑊)
lkrss.l 𝐿 = (LKer‘𝑊)
lkrss.d 𝐷 = (LDual‘𝑊)
lkrss.s · = ( ·𝑠𝐷)
lkrss.w (𝜑𝑊 ∈ LVec)
lkrss.g (𝜑𝐺𝐹)
lkrss.x (𝜑𝑋𝐾)
Assertion
Ref Expression
lkrss (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝑋 · 𝐺)))

Proof of Theorem lkrss
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 lkrss.r . . 3 𝑅 = (Scalar‘𝑊)
3 lkrss.k . . 3 𝐾 = (Base‘𝑅)
4 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
5 lkrss.f . . 3 𝐹 = (LFnl‘𝑊)
6 lkrss.l . . 3 𝐿 = (LKer‘𝑊)
7 lkrss.w . . 3 (𝜑𝑊 ∈ LVec)
8 lkrss.g . . 3 (𝜑𝐺𝐹)
9 lkrss.x . . 3 (𝜑𝑋𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9lkrscss 36755 . 2 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f (.r𝑅)((Base‘𝑊) × {𝑋}))))
11 lkrss.d . . . 4 𝐷 = (LDual‘𝑊)
12 lkrss.s . . . 4 · = ( ·𝑠𝐷)
135, 1, 2, 3, 4, 11, 12, 7, 9, 8ldualvs 36794 . . 3 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
1413fveq2d 6678 . 2 (𝜑 → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘(𝐺f (.r𝑅)((Base‘𝑊) × {𝑋}))))
1510, 14sseqtrrd 3918 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝑋 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wss 3843  {csn 4516   × cxp 5523  cfv 6339  (class class class)co 7170  f cof 7423  Basecbs 16586  .rcmulr 16669  Scalarcsca 16671   ·𝑠 cvsca 16672  LVecclvec 19993  LFnlclfn 36714  LKerclk 36742  LDualcld 36780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-sbg 18224  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-drng 19623  df-lmod 19755  df-lss 19823  df-lvec 19994  df-lfl 36715  df-lkr 36743  df-ldual 36781
This theorem is referenced by:  lkrss2N  36826  lkreqN  36827  lclkrslem1  39194  lcfrlem2  39200
  Copyright terms: Public domain W3C validator