![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem28 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 40760. TODO: This can be a hypothesis since the zero version of (π½βπ)βπΌ needs it. (Contributed by NM, 9-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | β’ π» = (LHypβπΎ) |
lcfrlem17.o | β’ β₯ = ((ocHβπΎ)βπ) |
lcfrlem17.u | β’ π = ((DVecHβπΎ)βπ) |
lcfrlem17.v | β’ π = (Baseβπ) |
lcfrlem17.p | β’ + = (+gβπ) |
lcfrlem17.z | β’ 0 = (0gβπ) |
lcfrlem17.n | β’ π = (LSpanβπ) |
lcfrlem17.a | β’ π΄ = (LSAtomsβπ) |
lcfrlem17.k | β’ (π β (πΎ β HL β§ π β π»)) |
lcfrlem17.x | β’ (π β π β (π β { 0 })) |
lcfrlem17.y | β’ (π β π β (π β { 0 })) |
lcfrlem17.ne | β’ (π β (πβ{π}) β (πβ{π})) |
lcfrlem22.b | β’ π΅ = ((πβ{π, π}) β© ( β₯ β{(π + π)})) |
lcfrlem24.t | β’ Β· = ( Β·π βπ) |
lcfrlem24.s | β’ π = (Scalarβπ) |
lcfrlem24.q | β’ π = (0gβπ) |
lcfrlem24.r | β’ π = (Baseβπ) |
lcfrlem24.j | β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
lcfrlem24.ib | β’ (π β πΌ β π΅) |
lcfrlem24.l | β’ πΏ = (LKerβπ) |
lcfrlem25.d | β’ π· = (LDualβπ) |
lcfrlem28.jn | β’ (π β ((π½βπ)βπΌ) β π) |
Ref | Expression |
---|---|
lcfrlem28 | β’ (π β πΌ β 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem28.jn | . 2 β’ (π β ((π½βπ)βπΌ) β π) | |
2 | lcfrlem17.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
3 | lcfrlem17.u | . . . . . 6 β’ π = ((DVecHβπΎ)βπ) | |
4 | lcfrlem17.k | . . . . . 6 β’ (π β (πΎ β HL β§ π β π»)) | |
5 | 2, 3, 4 | dvhlmod 40285 | . . . . 5 β’ (π β π β LMod) |
6 | lcfrlem17.o | . . . . . 6 β’ β₯ = ((ocHβπΎ)βπ) | |
7 | lcfrlem17.v | . . . . . 6 β’ π = (Baseβπ) | |
8 | lcfrlem17.p | . . . . . 6 β’ + = (+gβπ) | |
9 | lcfrlem24.t | . . . . . 6 β’ Β· = ( Β·π βπ) | |
10 | lcfrlem24.s | . . . . . 6 β’ π = (Scalarβπ) | |
11 | lcfrlem24.r | . . . . . 6 β’ π = (Baseβπ) | |
12 | lcfrlem17.z | . . . . . 6 β’ 0 = (0gβπ) | |
13 | eqid 2731 | . . . . . 6 β’ (LFnlβπ) = (LFnlβπ) | |
14 | lcfrlem24.l | . . . . . 6 β’ πΏ = (LKerβπ) | |
15 | lcfrlem25.d | . . . . . 6 β’ π· = (LDualβπ) | |
16 | eqid 2731 | . . . . . 6 β’ (0gβπ·) = (0gβπ·) | |
17 | eqid 2731 | . . . . . 6 β’ {π β (LFnlβπ) β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} = {π β (LFnlβπ) β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} | |
18 | lcfrlem24.j | . . . . . 6 β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) | |
19 | lcfrlem17.y | . . . . . 6 β’ (π β π β (π β { 0 })) | |
20 | 2, 6, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 4, 19 | lcfrlem10 40727 | . . . . 5 β’ (π β (π½βπ) β (LFnlβπ)) |
21 | lcfrlem24.q | . . . . . 6 β’ π = (0gβπ) | |
22 | 10, 21, 12, 13 | lfl0 38239 | . . . . 5 β’ ((π β LMod β§ (π½βπ) β (LFnlβπ)) β ((π½βπ)β 0 ) = π) |
23 | 5, 20, 22 | syl2anc 583 | . . . 4 β’ (π β ((π½βπ)β 0 ) = π) |
24 | fveqeq2 6900 | . . . 4 β’ (πΌ = 0 β (((π½βπ)βπΌ) = π β ((π½βπ)β 0 ) = π)) | |
25 | 23, 24 | syl5ibrcom 246 | . . 3 β’ (π β (πΌ = 0 β ((π½βπ)βπΌ) = π)) |
26 | 25 | necon3d 2960 | . 2 β’ (π β (((π½βπ)βπΌ) β π β πΌ β 0 )) |
27 | 1, 26 | mpd 15 | 1 β’ (π β πΌ β 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 {crab 3431 β cdif 3945 β© cin 3947 {csn 4628 {cpr 4630 β¦ cmpt 5231 βcfv 6543 β©crio 7367 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 Β·π cvsca 17206 0gc0g 17390 LModclmod 20615 LSpanclspn 20727 LSAtomsclsa 38148 LFnlclfn 38231 LKerclk 38259 LDualcld 38297 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 ocHcoch 40522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-undef 8262 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-lsatoms 38150 df-lshyp 38151 df-lfl 38232 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 df-tgrp 39918 df-tendo 39930 df-edring 39932 df-dveca 40178 df-disoa 40204 df-dvech 40254 df-dib 40314 df-dic 40348 df-dih 40404 df-doch 40523 df-djh 40570 |
This theorem is referenced by: lcfrlem35 40752 |
Copyright terms: Public domain | W3C validator |