MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsplit Structured version   Visualization version   GIF version

Theorem dprdsplit 19149
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dprdsplit.s = (LSSum‘𝐺)
dprdsplit.1 (𝜑𝐺dom DProd 𝑆)
Assertion
Ref Expression
dprdsplit (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))

Proof of Theorem dprdsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdsplit.2 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
32fdmd 6499 . . 3 (𝜑 → dom 𝑆 = 𝐼)
4 ssun1 4127 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
5 dprdsplit.u . . . . . . . 8 (𝜑𝐼 = (𝐶𝐷))
64, 5sseqtrrid 3999 . . . . . . 7 (𝜑𝐶𝐼)
71, 3, 6dprdres 19129 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
87simpld 497 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
9 dprdsubg 19125 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
108, 9syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
11 ssun2 4128 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1211, 5sseqtrrid 3999 . . . . . . 7 (𝜑𝐷𝐼)
131, 3, 12dprdres 19129 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
1413simpld 497 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 dprdsubg 19125 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
1614, 15syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
17 dprdsplit.i . . . . . . 7 (𝜑 → (𝐶𝐷) = ∅)
18 eqid 2820 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
19 eqid 2820 . . . . . . 7 (0g𝐺) = (0g𝐺)
202, 17, 5, 18, 19dmdprdsplit 19148 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)})))
211, 20mpbid 234 . . . . 5 (𝜑 → ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)}))
2221simp2d 1139 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))))
23 dprdsplit.s . . . . 5 = (LSSum‘𝐺)
2423, 18lsmsubg 18758 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷)))) → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
2510, 16, 22, 24syl3anc 1367 . . 3 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
265eleq2d 2896 . . . . . 6 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
27 elun 4104 . . . . . 6 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2826, 27syl6bb 289 . . . . 5 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
2928biimpa 479 . . . 4 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
30 fvres 6665 . . . . . . . 8 (𝑥𝐶 → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
3130adantl 484 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
328adantr 483 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝐺dom DProd (𝑆𝐶))
332, 6fssresd 6521 . . . . . . . . . 10 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
3433fdmd 6499 . . . . . . . . 9 (𝜑 → dom (𝑆𝐶) = 𝐶)
3534adantr 483 . . . . . . . 8 ((𝜑𝑥𝐶) → dom (𝑆𝐶) = 𝐶)
36 simpr 487 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝑥𝐶)
3732, 35, 36dprdub 19126 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
3831, 37eqsstrrd 3985 . . . . . 6 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
3923lsmub1 18761 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4010, 16, 39syl2anc 586 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4140adantr 483 . . . . . 6 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4238, 41sstrd 3956 . . . . 5 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
43 fvres 6665 . . . . . . . 8 (𝑥𝐷 → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4443adantl 484 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4514adantr 483 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐺dom DProd (𝑆𝐷))
462, 12fssresd 6521 . . . . . . . . . 10 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4746fdmd 6499 . . . . . . . . 9 (𝜑 → dom (𝑆𝐷) = 𝐷)
4847adantr 483 . . . . . . . 8 ((𝜑𝑥𝐷) → dom (𝑆𝐷) = 𝐷)
49 simpr 487 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
5045, 48, 49dprdub 19126 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5144, 50eqsstrrd 3985 . . . . . 6 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5223lsmub2 18762 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5310, 16, 52syl2anc 586 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5453adantr 483 . . . . . 6 ((𝜑𝑥𝐷) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5551, 54sstrd 3956 . . . . 5 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5642, 55jaodan 954 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5729, 56syldan 593 . . 3 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
581, 3, 25, 57dprdlub 19127 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
597simprd 498 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
6013simprd 498 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆))
61 dprdsubg 19125 . . . . 5 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
621, 61syl 17 . . . 4 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
6323lsmlub 18769 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6410, 16, 62, 63syl3anc 1367 . . 3 (𝜑 → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6559, 60, 64mpbi2and 710 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
6658, 65eqssd 3963 1 (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cun 3911  cin 3912  wss 3913  c0 4269  {csn 4543   class class class wbr 5042  dom cdm 5531  cres 5533  wf 6327  cfv 6331  (class class class)co 7133  0gc0g 16692  SubGrpcsubg 18252  Cntzccntz 18424  LSSumclsm 18738   DProd cdprd 19094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-oi 8952  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-fzo 13018  df-seq 13354  df-hash 13676  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-gsum 16695  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-subg 18255  df-ghm 18335  df-gim 18378  df-cntz 18426  df-oppg 18453  df-lsm 18740  df-cmn 18887  df-dprd 19096
This theorem is referenced by:  dprdpr  19151  dpjlsm  19155  ablfac1eulem  19173  ablfac1eu  19174  pgpfaclem1  19182
  Copyright terms: Public domain W3C validator