MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsplit Structured version   Visualization version   GIF version

Theorem dprdsplit 18655
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dprdsplit.s = (LSSum‘𝐺)
dprdsplit.1 (𝜑𝐺dom DProd 𝑆)
Assertion
Ref Expression
dprdsplit (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))

Proof of Theorem dprdsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdsplit.2 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
32fdmd 6193 . . 3 (𝜑 → dom 𝑆 = 𝐼)
4 ssun1 3927 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
5 dprdsplit.u . . . . . . . 8 (𝜑𝐼 = (𝐶𝐷))
64, 5syl5sseqr 3803 . . . . . . 7 (𝜑𝐶𝐼)
71, 3, 6dprdres 18635 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
87simpld 482 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
9 dprdsubg 18631 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
108, 9syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
11 ssun2 3928 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1211, 5syl5sseqr 3803 . . . . . . 7 (𝜑𝐷𝐼)
131, 3, 12dprdres 18635 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
1413simpld 482 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 dprdsubg 18631 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
1614, 15syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
17 dprdsplit.i . . . . . . 7 (𝜑 → (𝐶𝐷) = ∅)
18 eqid 2771 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
19 eqid 2771 . . . . . . 7 (0g𝐺) = (0g𝐺)
202, 17, 5, 18, 19dmdprdsplit 18654 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)})))
211, 20mpbid 222 . . . . 5 (𝜑 → ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)}))
2221simp2d 1137 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))))
23 dprdsplit.s . . . . 5 = (LSSum‘𝐺)
2423, 18lsmsubg 18276 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷)))) → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
2510, 16, 22, 24syl3anc 1476 . . 3 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
265eleq2d 2836 . . . . . 6 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
27 elun 3904 . . . . . 6 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2826, 27syl6bb 276 . . . . 5 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
2928biimpa 462 . . . 4 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
30 fvres 6350 . . . . . . . 8 (𝑥𝐶 → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
3130adantl 467 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
328adantr 466 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝐺dom DProd (𝑆𝐶))
332, 6fssresd 6212 . . . . . . . . . 10 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
3433fdmd 6193 . . . . . . . . 9 (𝜑 → dom (𝑆𝐶) = 𝐶)
3534adantr 466 . . . . . . . 8 ((𝜑𝑥𝐶) → dom (𝑆𝐶) = 𝐶)
36 simpr 471 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝑥𝐶)
3732, 35, 36dprdub 18632 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
3831, 37eqsstr3d 3789 . . . . . 6 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
3923lsmub1 18278 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4010, 16, 39syl2anc 573 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4140adantr 466 . . . . . 6 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4238, 41sstrd 3762 . . . . 5 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
43 fvres 6350 . . . . . . . 8 (𝑥𝐷 → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4443adantl 467 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4514adantr 466 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐺dom DProd (𝑆𝐷))
462, 12fssresd 6212 . . . . . . . . . 10 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4746fdmd 6193 . . . . . . . . 9 (𝜑 → dom (𝑆𝐷) = 𝐷)
4847adantr 466 . . . . . . . 8 ((𝜑𝑥𝐷) → dom (𝑆𝐷) = 𝐷)
49 simpr 471 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
5045, 48, 49dprdub 18632 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5144, 50eqsstr3d 3789 . . . . . 6 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5223lsmub2 18279 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5310, 16, 52syl2anc 573 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5453adantr 466 . . . . . 6 ((𝜑𝑥𝐷) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5551, 54sstrd 3762 . . . . 5 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5642, 55jaodan 942 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5729, 56syldan 579 . . 3 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
581, 3, 25, 57dprdlub 18633 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
597simprd 483 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
6013simprd 483 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆))
61 dprdsubg 18631 . . . . 5 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
621, 61syl 17 . . . 4 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
6323lsmlub 18285 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6410, 16, 62, 63syl3anc 1476 . . 3 (𝜑 → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6559, 60, 64mpbi2and 691 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
6658, 65eqssd 3769 1 (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  cun 3721  cin 3722  wss 3723  c0 4063  {csn 4317   class class class wbr 4787  dom cdm 5250  cres 5252  wf 6026  cfv 6030  (class class class)co 6796  0gc0g 16308  SubGrpcsubg 17796  Cntzccntz 17955  LSSumclsm 18256   DProd cdprd 18600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-ghm 17866  df-gim 17909  df-cntz 17957  df-oppg 17983  df-lsm 18258  df-cmn 18402  df-dprd 18602
This theorem is referenced by:  dprdpr  18657  dpjlsm  18661  ablfac1eulem  18679  ablfac1eu  18680  pgpfaclem1  18688
  Copyright terms: Public domain W3C validator