Step | Hyp | Ref
| Expression |
1 | | dprdsplit.1 |
. . 3
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
2 | | dprdsplit.2 |
. . . 4
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
3 | 2 | fdmd 6611 |
. . 3
⊢ (𝜑 → dom 𝑆 = 𝐼) |
4 | | ssun1 4106 |
. . . . . . . 8
⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) |
5 | | dprdsplit.u |
. . . . . . . 8
⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
6 | 4, 5 | sseqtrrid 3974 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
7 | 1, 3, 6 | dprdres 19631 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
8 | 7 | simpld 495 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
9 | | dprdsubg 19627 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
11 | | ssun2 4107 |
. . . . . . . 8
⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) |
12 | 11, 5 | sseqtrrid 3974 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
13 | 1, 3, 12 | dprdres 19631 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
14 | 13 | simpld 495 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
15 | | dprdsubg 19627 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
16 | 14, 15 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
17 | | dprdsplit.i |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
18 | | eqid 2738 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
19 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
20 | 2, 17, 5, 18, 19 | dmdprdsplit 19650 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = {(0g‘𝐺)}))) |
21 | 1, 20 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = {(0g‘𝐺)})) |
22 | 21 | simp2d 1142 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
23 | | dprdsplit.s |
. . . . 5
⊢ ⊕ =
(LSSum‘𝐺) |
24 | 23, 18 | lsmsubg 19259 |
. . . 4
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷)))) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
25 | 10, 16, 22, 24 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
26 | 5 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
27 | | elun 4083 |
. . . . . 6
⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
28 | 26, 27 | bitrdi 287 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
29 | 28 | biimpa 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
30 | | fvres 6793 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑥) = (𝑆‘𝑥)) |
31 | 30 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑥) = (𝑆‘𝑥)) |
32 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
33 | 2, 6 | fssresd 6641 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
34 | 33 | fdmd 6611 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
35 | 34 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → dom (𝑆 ↾ 𝐶) = 𝐶) |
36 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
37 | 32, 35, 36 | dprdub 19628 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
38 | 31, 37 | eqsstrrd 3960 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
39 | 23 | lsmub1 19262 |
. . . . . . . 8
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
40 | 10, 16, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
41 | 40 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
42 | 38, 41 | sstrd 3931 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
43 | | fvres 6793 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → ((𝑆 ↾ 𝐷)‘𝑥) = (𝑆‘𝑥)) |
44 | 43 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆 ↾ 𝐷)‘𝑥) = (𝑆‘𝑥)) |
45 | 14 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
46 | 2, 12 | fssresd 6641 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
47 | 46 | fdmd 6611 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
48 | 47 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → dom (𝑆 ↾ 𝐷) = 𝐷) |
49 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
50 | 45, 48, 49 | dprdub 19628 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆 ↾ 𝐷)‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
51 | 44, 50 | eqsstrrd 3960 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑆‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
52 | 23 | lsmub2 19263 |
. . . . . . . 8
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
53 | 10, 16, 52 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
54 | 53 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
55 | 51, 54 | sstrd 3931 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
56 | 42, 55 | jaodan 955 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
57 | 29, 56 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
58 | 1, 3, 25, 57 | dprdlub 19629 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
59 | 7 | simprd 496 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆)) |
60 | 13 | simprd 496 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆)) |
61 | | dprdsubg 19627 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
62 | 1, 61 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
63 | 23 | lsmlub 19270 |
. . . 4
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (((𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆))) |
64 | 10, 16, 62, 63 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (((𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆))) |
65 | 59, 60, 64 | mpbi2and 709 |
. 2
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆)) |
66 | 58, 65 | eqssd 3938 |
1
⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |