| Step | Hyp | Ref
| Expression |
| 1 | | dprdsplit.1 |
. . 3
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 2 | | dprdsplit.2 |
. . . 4
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 3 | 2 | fdmd 6746 |
. . 3
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | | ssun1 4178 |
. . . . . . . 8
⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) |
| 5 | | dprdsplit.u |
. . . . . . . 8
⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
| 6 | 4, 5 | sseqtrrid 4027 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
| 7 | 1, 3, 6 | dprdres 20048 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
| 8 | 7 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 9 | | dprdsubg 20044 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 11 | | ssun2 4179 |
. . . . . . . 8
⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) |
| 12 | 11, 5 | sseqtrrid 4027 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
| 13 | 1, 3, 12 | dprdres 20048 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
| 14 | 13 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| 15 | | dprdsubg 20044 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 16 | 14, 15 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 17 | | dprdsplit.i |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| 18 | | eqid 2737 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 19 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 20 | 2, 17, 5, 18, 19 | dmdprdsplit 20067 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = {(0g‘𝐺)}))) |
| 21 | 1, 20 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = {(0g‘𝐺)})) |
| 22 | 21 | simp2d 1144 |
. . . 4
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 23 | | dprdsplit.s |
. . . . 5
⊢ ⊕ =
(LSSum‘𝐺) |
| 24 | 23, 18 | lsmsubg 19672 |
. . . 4
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ 𝐷)))) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
| 25 | 10, 16, 22, 24 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
| 26 | 5 | eleq2d 2827 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
| 27 | | elun 4153 |
. . . . . 6
⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
| 28 | 26, 27 | bitrdi 287 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
| 29 | 28 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
| 30 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑥) = (𝑆‘𝑥)) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑥) = (𝑆‘𝑥)) |
| 32 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 33 | 2, 6 | fssresd 6775 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
| 34 | 33 | fdmd 6746 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 35 | 34 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 36 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 37 | 32, 35, 36 | dprdub 20045 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 38 | 31, 37 | eqsstrrd 4019 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 39 | 23 | lsmub1 19675 |
. . . . . . . 8
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 40 | 10, 16, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 41 | 40 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 42 | 38, 41 | sstrd 3994 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 43 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → ((𝑆 ↾ 𝐷)‘𝑥) = (𝑆‘𝑥)) |
| 44 | 43 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆 ↾ 𝐷)‘𝑥) = (𝑆‘𝑥)) |
| 45 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| 46 | 2, 12 | fssresd 6775 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
| 47 | 46 | fdmd 6746 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 48 | 47 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 49 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
| 50 | 45, 48, 49 | dprdub 20045 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆 ↾ 𝐷)‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 51 | 44, 50 | eqsstrrd 4019 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑆‘𝑥) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 52 | 23 | lsmub2 19676 |
. . . . . . . 8
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 53 | 10, 16, 52 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 54 | 53 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 55 | 51, 54 | sstrd 3994 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 56 | 42, 55 | jaodan 960 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 57 | 29, 56 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 58 | 1, 3, 25, 57 | dprdlub 20046 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 59 | 7 | simprd 495 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆)) |
| 60 | 13 | simprd 495 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆)) |
| 61 | | dprdsubg 20044 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
| 62 | 1, 61 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
| 63 | 23 | lsmlub 19682 |
. . . 4
⊢ (((𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (((𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆))) |
| 64 | 10, 16, 62, 63 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (((𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆))) |
| 65 | 59, 60, 64 | mpbi2and 712 |
. 2
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝐺 DProd 𝑆)) |
| 66 | 58, 65 | eqssd 4001 |
1
⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) |