MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsplit Structured version   Visualization version   GIF version

Theorem dprdsplit 19987
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dprdsplit.s = (LSSum‘𝐺)
dprdsplit.1 (𝜑𝐺dom DProd 𝑆)
Assertion
Ref Expression
dprdsplit (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))

Proof of Theorem dprdsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dprdsplit.2 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
32fdmd 6701 . . 3 (𝜑 → dom 𝑆 = 𝐼)
4 ssun1 4144 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
5 dprdsplit.u . . . . . . . 8 (𝜑𝐼 = (𝐶𝐷))
64, 5sseqtrrid 3993 . . . . . . 7 (𝜑𝐶𝐼)
71, 3, 6dprdres 19967 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
87simpld 494 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
9 dprdsubg 19963 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
108, 9syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
11 ssun2 4145 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1211, 5sseqtrrid 3993 . . . . . . 7 (𝜑𝐷𝐼)
131, 3, 12dprdres 19967 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
1413simpld 494 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 dprdsubg 19963 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
1614, 15syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
17 dprdsplit.i . . . . . . 7 (𝜑 → (𝐶𝐷) = ∅)
18 eqid 2730 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
19 eqid 2730 . . . . . . 7 (0g𝐺) = (0g𝐺)
202, 17, 5, 18, 19dmdprdsplit 19986 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)})))
211, 20mpbid 232 . . . . 5 (𝜑 → ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = {(0g𝐺)}))
2221simp2d 1143 . . . 4 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷))))
23 dprdsplit.s . . . . 5 = (LSSum‘𝐺)
2423, 18lsmsubg 19591 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆𝐷)))) → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
2510, 16, 22, 24syl3anc 1373 . . 3 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
265eleq2d 2815 . . . . . 6 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
27 elun 4119 . . . . . 6 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2826, 27bitrdi 287 . . . . 5 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
2928biimpa 476 . . . 4 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
30 fvres 6880 . . . . . . . 8 (𝑥𝐶 → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
3130adantl 481 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
328adantr 480 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝐺dom DProd (𝑆𝐶))
332, 6fssresd 6730 . . . . . . . . . 10 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
3433fdmd 6701 . . . . . . . . 9 (𝜑 → dom (𝑆𝐶) = 𝐶)
3534adantr 480 . . . . . . . 8 ((𝜑𝑥𝐶) → dom (𝑆𝐶) = 𝐶)
36 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝑥𝐶)
3732, 35, 36dprdub 19964 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
3831, 37eqsstrrd 3985 . . . . . 6 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐶)))
3923lsmub1 19594 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4010, 16, 39syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4140adantr 480 . . . . . 6 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐶)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
4238, 41sstrd 3960 . . . . 5 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
43 fvres 6880 . . . . . . . 8 (𝑥𝐷 → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4443adantl 481 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) = (𝑆𝑥))
4514adantr 480 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐺dom DProd (𝑆𝐷))
462, 12fssresd 6730 . . . . . . . . . 10 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
4746fdmd 6701 . . . . . . . . 9 (𝜑 → dom (𝑆𝐷) = 𝐷)
4847adantr 480 . . . . . . . 8 ((𝜑𝑥𝐷) → dom (𝑆𝐷) = 𝐷)
49 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥𝐷)
5045, 48, 49dprdub 19964 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑆𝐷)‘𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5144, 50eqsstrrd 3985 . . . . . 6 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑆𝐷)))
5223lsmub2 19595 . . . . . . . 8 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺)) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5310, 16, 52syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5453adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → (𝐺 DProd (𝑆𝐷)) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5551, 54sstrd 3960 . . . . 5 ((𝜑𝑥𝐷) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5642, 55jaodan 959 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
5729, 56syldan 591 . . 3 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
581, 3, 25, 57dprdlub 19965 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
597simprd 495 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
6013simprd 495 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆))
61 dprdsubg 19963 . . . . 5 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
621, 61syl 17 . . . 4 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
6323lsmlub 19601 . . . 4 (((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6410, 16, 62, 63syl3anc 1373 . . 3 (𝜑 → (((𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)) ↔ ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆)))
6559, 60, 64mpbi2and 712 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
6658, 65eqssd 3967 1 (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆𝐶)) (𝐺 DProd (𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  0gc0g 17409  SubGrpcsubg 19059  Cntzccntz 19254  LSSumclsm 19571   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-dprd 19934
This theorem is referenced by:  dprdpr  19989  dpjlsm  19993  ablfac1eulem  20011  ablfac1eu  20012  pgpfaclem1  20020
  Copyright terms: Public domain W3C validator