MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubg Structured version   Visualization version   GIF version

Theorem mplsubg 21898
Description: The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mplsubg.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mplsubg (𝜑𝑈 ∈ (SubGrp‘𝑆))

Proof of Theorem mplsubg
Dummy variables 𝑥 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2726 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2726 . 2 (0g𝑅) = (0g𝑅)
4 eqid 2726 . 2 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 mplsubg.i . 2 (𝜑𝐼𝑊)
6 0fin 9170 . . 3 ∅ ∈ Fin
76a1i 11 . 2 (𝜑 → ∅ ∈ Fin)
8 unfi 9171 . . 3 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
98adantl 481 . 2 ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
10 ssfi 9172 . . 3 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
1110adantl 481 . 2 ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦𝑥)) → 𝑦 ∈ Fin)
12 mplsubg.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
13 mplsubg.u . . 3 𝑈 = (Base‘𝑃)
141, 12, 13, 5mplsubglem2 21897 . 2 (𝜑𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g𝑅)) ∈ Fin})
15 mplsubg.r . 2 (𝜑𝑅 ∈ Grp)
161, 2, 3, 4, 5, 7, 9, 11, 14, 15mplsubglem 21895 1 (𝜑𝑈 ∈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  cun 3941  wss 3943  c0 4317  ccnv 5668  cima 5672  cfv 6536  (class class class)co 7404  m cmap 8819  Fincfn 8938  cn 12213  0cn0 12473  Basecbs 17150  0gc0g 17391  Grpcgrp 18860  SubGrpcsubg 19044   mPwSer cmps 21793   mPoly cmpl 21795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-hom 17227  df-cco 17228  df-0g 17393  df-prds 17399  df-pws 17401  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-grp 18863  df-minusg 18864  df-subg 19047  df-psr 21798  df-mpl 21800
This theorem is referenced by:  mplsubrg  21901  mpl0  21902  mplneg  21906  mplgrp  21913
  Copyright terms: Public domain W3C validator