MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllss Structured version   Visualization version   GIF version

Theorem mpllss 22023
Description: The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mpllss (𝜑𝑈 ∈ (LSubSp‘𝑆))

Proof of Theorem mpllss
Dummy variables 𝑥 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2737 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2737 . 2 (0g𝑅) = (0g𝑅)
4 eqid 2737 . 2 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 mplsubg.i . 2 (𝜑𝐼𝑊)
6 0fi 9082 . . 3 ∅ ∈ Fin
76a1i 11 . 2 (𝜑 → ∅ ∈ Fin)
8 unfi 9211 . . 3 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
98adantl 481 . 2 ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
10 ssfi 9213 . . 3 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
1110adantl 481 . 2 ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦𝑥)) → 𝑦 ∈ Fin)
12 mplsubg.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
13 mplsubg.u . . 3 𝑈 = (Base‘𝑃)
141, 12, 13, 5mplsubglem2 22021 . 2 (𝜑𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g𝑅)) ∈ Fin})
15 mpllss.r . 2 (𝜑𝑅 ∈ Ring)
161, 2, 3, 4, 5, 7, 9, 11, 14, 15mpllsslem 22020 1 (𝜑𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  cun 3949  wss 3951  c0 4333  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  cn 12266  0cn0 12526  Basecbs 17247  0gc0g 17484  Ringcrg 20230  LSubSpclss 20929   mPwSer cmps 21924   mPoly cmpl 21926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-lss 20930  df-psr 21929  df-mpl 21931
This theorem is referenced by:  mpllmod  22038  mplassa  22042  mplbas2  22060  mplind  22094  ply1lss  22198
  Copyright terms: Public domain W3C validator