Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpllss | Structured version Visualization version GIF version |
Description: The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mpllss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mpllss | ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubg.s | . 2 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | eqid 2740 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2740 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | eqid 2740 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | mplsubg.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | 0fin 8936 | . . 3 ⊢ ∅ ∈ Fin | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ Fin) |
8 | unfi 8937 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
9 | 8 | adantl 482 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
10 | ssfi 8938 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
11 | 10 | adantl 482 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ Fin) |
12 | mplsubg.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
13 | mplsubg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
14 | 1, 12, 13, 5 | mplsubglem2 21205 | . 2 ⊢ (𝜑 → 𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g‘𝑅)) ∈ Fin}) |
15 | mpllss.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
16 | 1, 2, 3, 4, 5, 7, 9, 11, 14, 15 | mpllsslem 21204 | 1 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {crab 3070 ∪ cun 3890 ⊆ wss 3892 ∅c0 4262 ◡ccnv 5589 “ cima 5593 ‘cfv 6432 (class class class)co 7271 ↑m cmap 8598 Fincfn 8716 ℕcn 11973 ℕ0cn0 12233 Basecbs 16910 0gc0g 17148 Ringcrg 19781 LSubSpclss 20191 mPwSer cmps 21105 mPoly cmpl 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-tset 16979 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-subg 18750 df-mgp 19719 df-ring 19783 df-lss 20192 df-psr 21110 df-mpl 21112 |
This theorem is referenced by: mpllmod 21221 mplassa 21225 mplbas2 21241 mplind 21276 ply1lss 21365 |
Copyright terms: Public domain | W3C validator |