Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpllss | Structured version Visualization version GIF version |
Description: The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mpllss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mpllss | ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubg.s | . 2 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | eqid 2739 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2739 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | eqid 2739 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | mplsubg.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | 0fin 8919 | . . 3 ⊢ ∅ ∈ Fin | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ Fin) |
8 | unfi 8920 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
9 | 8 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
10 | ssfi 8921 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ Fin) |
12 | mplsubg.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
13 | mplsubg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
14 | 1, 12, 13, 5 | mplsubglem2 21188 | . 2 ⊢ (𝜑 → 𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g‘𝑅)) ∈ Fin}) |
15 | mpllss.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
16 | 1, 2, 3, 4, 5, 7, 9, 11, 14, 15 | mpllsslem 21187 | 1 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 ∪ cun 3889 ⊆ wss 3891 ∅c0 4261 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Fincfn 8707 ℕcn 11956 ℕ0cn0 12216 Basecbs 16893 0gc0g 17131 Ringcrg 19764 LSubSpclss 20174 mPwSer cmps 21088 mPoly cmpl 21090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-tset 16962 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-subg 18733 df-mgp 19702 df-ring 19766 df-lss 20175 df-psr 21093 df-mpl 21095 |
This theorem is referenced by: mpllmod 21204 mplassa 21208 mplbas2 21224 mplind 21259 ply1lss 21348 |
Copyright terms: Public domain | W3C validator |