| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zconstr | Structured version Visualization version GIF version | ||
| Description: Integers are constructible. (Contributed by Thierry Arnoux, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| zconstr.1 | ⊢ (𝜑 → 𝑋 ∈ ℤ) |
| Ref | Expression |
|---|---|
| zconstr | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0) | |
| 2 | 1 | nn0constr 33747 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ Constr) |
| 3 | zconstr.1 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℤ) | |
| 4 | 3 | zcnd 12600 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 5 | 4 | negnegd 11485 | . . . 4 ⊢ (𝜑 → --𝑋 = 𝑋) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑋 ∈ ℕ0) → --𝑋 = 𝑋) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ -𝑋 ∈ ℕ0) → -𝑋 ∈ ℕ0) | |
| 8 | 7 | nn0constr 33747 | . . . 4 ⊢ ((𝜑 ∧ -𝑋 ∈ ℕ0) → -𝑋 ∈ Constr) |
| 9 | 8 | constrnegcl 33749 | . . 3 ⊢ ((𝜑 ∧ -𝑋 ∈ ℕ0) → --𝑋 ∈ Constr) |
| 10 | 6, 9 | eqeltrrd 2829 | . 2 ⊢ ((𝜑 ∧ -𝑋 ∈ ℕ0) → 𝑋 ∈ Constr) |
| 11 | elznn0 12505 | . . . 4 ⊢ (𝑋 ∈ ℤ ↔ (𝑋 ∈ ℝ ∧ (𝑋 ∈ ℕ0 ∨ -𝑋 ∈ ℕ0))) | |
| 12 | 3, 11 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑋 ∈ ℝ ∧ (𝑋 ∈ ℕ0 ∨ -𝑋 ∈ ℕ0))) |
| 13 | 12 | simprd 495 | . 2 ⊢ (𝜑 → (𝑋 ∈ ℕ0 ∨ -𝑋 ∈ ℕ0)) |
| 14 | 2, 10, 13 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ℝcr 11027 -cneg 11367 ℕ0cn0 12403 ℤcz 12490 Constrcconstr 33715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-n0 12404 df-z 12491 df-cj 15025 df-re 15026 df-im 15027 df-abs 15162 df-constr 33716 |
| This theorem is referenced by: constrrecl 33755 constrimcl 33756 constrmulcl 33757 constrreinvcl 33758 constrinvcl 33759 constrsdrg 33761 constrresqrtcl 33763 constrabscl 33764 constrsqrtcl 33765 cos9thpinconstrlem1 33775 |
| Copyright terms: Public domain | W3C validator |