Proof of Theorem no3indslem
Step | Hyp | Ref
| Expression |
1 | | no3indslem.b |
. . . . . 6
⊢ 𝑆 = {〈𝑐, 𝑑〉 ∣ (𝑐 ∈ (( No
× No ) × No
) ∧ 𝑑 ∈
(( No × No )
× No ) ∧ ((((1st
‘(1st ‘𝑐))𝑅(1st ‘(1st
‘𝑑)) ∨
(1st ‘(1st ‘𝑐)) = (1st ‘(1st
‘𝑑))) ∧
((2nd ‘(1st ‘𝑐))𝑅(2nd ‘(1st
‘𝑑)) ∨
(2nd ‘(1st ‘𝑐)) = (2nd ‘(1st
‘𝑑))) ∧
((2nd ‘𝑐)𝑅(2nd ‘𝑑) ∨ (2nd ‘𝑐) = (2nd ‘𝑑))) ∧ 𝑐 ≠ 𝑑))} |
2 | | no3indslem.a |
. . . . . . . 8
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
3 | 2 | lrrecfr 33737 |
. . . . . . 7
⊢ 𝑅 Fr No
|
4 | 3 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝑅 Fr No ) |
5 | 1, 4, 4, 4 | frxp3 33408 |
. . . . 5
⊢ (⊤
→ 𝑆 Fr (( No × No ) ×
No )) |
6 | 5 | mptru 1549 |
. . . 4
⊢ 𝑆 Fr (( No
× No ) × No ) |
7 | 2 | lrrecpo 33735 |
. . . . . . 7
⊢ 𝑅 Po No
|
8 | 7 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝑅 Po No ) |
9 | 1, 8, 8, 8 | poxp3 33407 |
. . . . 5
⊢ (⊤
→ 𝑆 Po (( No × No ) ×
No )) |
10 | 9 | mptru 1549 |
. . . 4
⊢ 𝑆 Po (( No
× No ) × No ) |
11 | 2 | lrrecse 33736 |
. . . . . . 7
⊢ 𝑅 Se No
|
12 | 11 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝑅 Se No ) |
13 | 1, 12, 12, 12 | sexp3 33410 |
. . . . 5
⊢ (⊤
→ 𝑆 Se (( No × No ) ×
No )) |
14 | 13 | mptru 1549 |
. . . 4
⊢ 𝑆 Se (( No
× No ) × No ) |
15 | | elxpxp 33257 |
. . . . . 6
⊢ (𝑝 ∈ ((
No × No ) × No ) ↔ ∃𝑥 ∈ No
∃𝑦 ∈ No ∃𝑧 ∈ No
𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
16 | 1 | xpord3pred 33409 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ Pred(𝑆, (( No × No ) ×
No ), 〈〈𝑥, 𝑦〉, 𝑧〉) = ((((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) × (Pred(𝑅, No , 𝑧) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉})) |
17 | 2 | lrrecpred 33738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈
No → Pred(𝑅,
No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
18 | 17 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
19 | 18 | uneq1d 4052 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (Pred(𝑅, No , 𝑥) ∪ {𝑥}) = ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})) |
20 | 2 | lrrecpred 33738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈
No → Pred(𝑅,
No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
21 | 20 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
22 | 21 | uneq1d 4052 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (Pred(𝑅, No , 𝑦) ∪ {𝑦}) = ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) |
23 | 19, 22 | xpeq12d 5556 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) = (((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦}))) |
24 | 2 | lrrecpred 33738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈
No → Pred(𝑅,
No , 𝑧) = (( L ‘𝑧) ∪ ( R ‘𝑧))) |
25 | 24 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ Pred(𝑅, No , 𝑧) = (( L ‘𝑧) ∪ ( R ‘𝑧))) |
26 | 25 | uneq1d 4052 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (Pred(𝑅, No , 𝑧) ∪ {𝑧}) = ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) |
27 | 23, 26 | xpeq12d 5556 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) × (Pred(𝑅, No , 𝑧) ∪ {𝑧})) = ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))) |
28 | 27 | difeq1d 4012 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) × (Pred(𝑅, No , 𝑧) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉}) = (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉})) |
29 | 16, 28 | eqtrd 2773 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ Pred(𝑆, (( No × No ) ×
No ), 〈〈𝑥, 𝑦〉, 𝑧〉) = (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉})) |
30 | 29 | raleqdv 3316 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (∀𝑞 ∈
Pred (𝑆, (( No × No ) ×
No ), 〈〈𝑥, 𝑦〉, 𝑧〉)𝜓 ↔ ∀𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉})𝜓)) |
31 | | eldif 3853 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉}) ↔ (𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∧ ¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉})) |
32 | 31 | imbi1i 353 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉}) → 𝜓) ↔ ((𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∧ ¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉}) → 𝜓)) |
33 | | impexp 454 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∧ ¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉}) → 𝜓) ↔ (𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) → (¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓))) |
34 | 32, 33 | bitri 278 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉}) → 𝜓) ↔ (𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) → (¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓))) |
35 | 34 | ralbii2 3078 |
. . . . . . . . . . . 12
⊢
(∀𝑞 ∈
(((((( L ‘𝑥) ∪ (
R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {〈〈𝑥, 𝑦〉, 𝑧〉})𝜓 ↔ ∀𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓)) |
36 | 30, 35 | bitrdi 290 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (∀𝑞 ∈
Pred (𝑆, (( No × No ) ×
No ), 〈〈𝑥, 𝑦〉, 𝑧〉)𝜓 ↔ ∀𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓))) |
37 | | eleq1 2820 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 〈〈𝑤, 𝑡〉, 𝑢〉 → (𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} ↔ 〈〈𝑤, 𝑡〉, 𝑢〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉})) |
38 | 37 | notbid 321 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 〈〈𝑤, 𝑡〉, 𝑢〉 → (¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} ↔ ¬ 〈〈𝑤, 𝑡〉, 𝑢〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉})) |
39 | | df-ne 2935 |
. . . . . . . . . . . . . . . . 17
⊢
(〈〈𝑤,
𝑡〉, 𝑢〉 ≠ 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ¬ 〈〈𝑤, 𝑡〉, 𝑢〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
40 | | vex 3402 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑤 ∈ V |
41 | | vex 3402 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑡 ∈ V |
42 | | vex 3402 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑢 ∈ V |
43 | 40, 41, 42 | otthne 33256 |
. . . . . . . . . . . . . . . . 17
⊢
(〈〈𝑤,
𝑡〉, 𝑢〉 ≠ 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
44 | 39, 43 | bitr3i 280 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈〈𝑤, 𝑡〉, 𝑢〉 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
45 | | opex 5322 |
. . . . . . . . . . . . . . . . 17
⊢
〈〈𝑤, 𝑡〉, 𝑢〉 ∈ V |
46 | 45 | elsn 4531 |
. . . . . . . . . . . . . . . 16
⊢
(〈〈𝑤,
𝑡〉, 𝑢〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} ↔ 〈〈𝑤, 𝑡〉, 𝑢〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
47 | 44, 46 | xchnxbir 336 |
. . . . . . . . . . . . . . 15
⊢ (¬
〈〈𝑤, 𝑡〉, 𝑢〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} ↔ (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
48 | 38, 47 | bitrdi 290 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 〈〈𝑤, 𝑡〉, 𝑢〉 → (¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} ↔ (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧))) |
49 | | no3indslem.3 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 〈〈𝑤, 𝑡〉, 𝑢〉 → (𝜓 ↔ 𝜃)) |
50 | 48, 49 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈〈𝑤, 𝑡〉, 𝑢〉 → ((¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
51 | 50 | ralxp3 33260 |
. . . . . . . . . . . 12
⊢
(∀𝑞 ∈
((((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓) ↔ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
52 | | ssun1 4062 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (( L
‘𝑥) ∪ ( R
‘𝑥)) ⊆ ((( L
‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥}) |
53 | | ssralv 3943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((( L
‘𝑥) ∪ ( R
‘𝑥)) ⊆ ((( L
‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥}) → (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
55 | | ssun1 4062 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (( L
‘𝑦) ∪ ( R
‘𝑦)) ⊆ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦}) |
56 | | ssralv 3943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ⊆ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦}) → (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
((( L ‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
58 | | ssun1 4062 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( L
‘𝑧) ∪ ( R
‘𝑧)) ⊆ ((( L
‘𝑧) ∪ ( R
‘𝑧)) ∪ {𝑧}) |
59 | | ssralv 3943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((( L
‘𝑧) ∪ ( R
‘𝑧)) ⊆ ((( L
‘𝑧) ∪ ( R
‘𝑧)) ∪ {𝑧}) → (∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
60 | 58, 59 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑢 ∈
((( L ‘𝑧) ∪ ( R
‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
61 | 60 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈ ((
L ‘𝑦) ∪ ( R
‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
62 | 57, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑡 ∈
((( L ‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
63 | 62 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
64 | 54, 63 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
65 | 64 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
66 | | nfv 1921 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤(𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No
) |
67 | | nfra1 3131 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) |
68 | 66, 67 | nfan 1906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑤((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
69 | | nfv 1921 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡(𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No
) |
70 | | nfra2w 3140 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) |
71 | 69, 70 | nfan 1906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
72 | | nfv 1921 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) |
73 | 71, 72 | nfan 1906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡(((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) |
74 | | nfv 1921 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑢(𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No
) |
75 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑢((( L
‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥}) |
76 | | nfra2w 3140 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑢∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) |
77 | 75, 76 | nfralw 3138 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑢∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) |
78 | 74, 77 | nfan 1906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑢((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
79 | | nfv 1921 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑢 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) |
80 | 78, 79 | nfan 1906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑢(((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) |
81 | | nfv 1921 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑢 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) |
82 | 80, 81 | nfan 1906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑢((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) |
83 | | simpl1 1192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → 𝑥 ∈ No
) |
84 | | leftirr 33711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈
No → ¬ 𝑥
∈ ( L ‘𝑥)) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ 𝑥 ∈ ( L ‘𝑥)) |
86 | | rightirr 33712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈
No → ¬ 𝑥
∈ ( R ‘𝑥)) |
87 | 83, 86 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ 𝑥 ∈ ( R ‘𝑥)) |
88 | | ioran 983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬
(𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥)) ↔ (¬ 𝑥 ∈ ( L ‘𝑥) ∧ ¬ 𝑥 ∈ ( R ‘𝑥))) |
89 | 85, 87, 88 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥))) |
90 | | eleq1w 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑥 → (𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ 𝑥 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))) |
91 | | elun 4039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥))) |
92 | 90, 91 | bitrdi 290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑥 → (𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥)))) |
93 | 92 | notbid 321 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑥 → (¬ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ ¬ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥)))) |
94 | 89, 93 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (𝑤 = 𝑥 → ¬ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))) |
95 | 94 | necon2ad 2949 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) → 𝑤 ≠ 𝑥)) |
96 | 95 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → 𝑤 ≠ 𝑥) |
97 | 96 | 3mix1d 1337 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
98 | 97 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
99 | 98 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
100 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → 𝜃)) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → 𝜃)) |
102 | 82, 101 | ralimda 3397 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃)) |
103 | 73, 102 | ralimda 3397 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃)) |
104 | 68, 103 | ralimda 3397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃)) |
105 | 65, 104 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃) |
106 | | ssun2 4063 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧} ⊆ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}) |
107 | | ssralv 3943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({𝑧} ⊆ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}) → (∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
108 | 106, 107 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑢 ∈
((( L ‘𝑧) ∪ ( R
‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
109 | 108 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑡 ∈ ((
L ‘𝑦) ∪ ( R
‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
110 | 57, 109 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
((( L ‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
111 | 110 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
112 | 54, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
113 | 112 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
114 | | vex 3402 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
115 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (𝑤 ≠ 𝑥 ↔ 𝑤 ≠ 𝑥)) |
116 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (𝑡 ≠ 𝑦 ↔ 𝑡 ≠ 𝑦)) |
117 | | neeq1 2996 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (𝑢 ≠ 𝑧 ↔ 𝑧 ≠ 𝑧)) |
118 | 115, 116,
117 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) ↔ (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧))) |
119 | | no3indslem.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → (𝜃 ↔ 𝜏)) |
120 | 118, 119 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = 𝑧 → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏))) |
121 | 114, 120 | ralsn 4572 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑢 ∈
{𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏)) |
122 | 121 | 2ralbii 3081 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏)) |
123 | 113, 122 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏)) |
124 | 96 | 3mix1d 1337 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧)) |
125 | 124 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧)) |
126 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏) → 𝜏)) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏) → 𝜏)) |
128 | 73, 127 | ralimda 3397 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏)) |
129 | 68, 128 | ralimda 3397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜏) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏)) |
130 | 123, 129 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏) |
131 | | ssun2 4063 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑦} ⊆ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦}) |
132 | | ssralv 3943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({𝑦} ⊆ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦}) → (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
133 | 131, 132 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑡 ∈
((( L ‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
134 | 60 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑡 ∈
{𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
135 | 133, 134 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
((( L ‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
136 | 135 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
137 | 54, 136 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
138 | 137 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
139 | | vex 3402 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
140 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑦 → (𝑤 ≠ 𝑥 ↔ 𝑤 ≠ 𝑥)) |
141 | | neeq1 2996 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑦 → (𝑡 ≠ 𝑦 ↔ 𝑦 ≠ 𝑦)) |
142 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑦 → (𝑢 ≠ 𝑧 ↔ 𝑢 ≠ 𝑧)) |
143 | 140, 141,
142 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑦 → ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) ↔ (𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧))) |
144 | | no3indslem.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑦 → (𝜃 ↔ 𝜂)) |
145 | 143, 144 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑦 → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂))) |
146 | 145 | ralbidv 3109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑦 → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂))) |
147 | 139, 146 | ralsn 4572 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑡 ∈
{𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂)) |
148 | 147 | ralbii 3080 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂)) |
149 | 138, 148 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂)) |
150 | 96 | 3mix1d 1337 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
151 | 150 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
152 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → (((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂) → 𝜂)) |
153 | 151, 152 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂) → 𝜂)) |
154 | 80, 153 | ralimda 3397 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂)) |
155 | 68, 154 | ralimda 3397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂)) |
156 | 149, 155 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) |
157 | 105, 130,
156 | 3jca 1129 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂)) |
158 | 108 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑡 ∈
{𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
159 | 133, 158 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
((( L ‘𝑦) ∪ ( R
‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
160 | 159 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
161 | 54, 160 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
162 | 161 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
163 | 145 | ralbidv 3109 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑦 → (∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂))) |
164 | 139, 163 | ralsn 4572 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑡 ∈
{𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂)) |
165 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑧 → (𝑦 ≠ 𝑦 ↔ 𝑦 ≠ 𝑦)) |
166 | 115, 165,
117 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) ↔ (𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧))) |
167 | | no3indslem.6 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (𝜂 ↔ 𝜁)) |
168 | 166, 167 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → (((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁))) |
169 | 114, 168 | ralsn 4572 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑢 ∈
{𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜂) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁)) |
170 | 164, 169 | bitri 278 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑡 ∈
{𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁)) |
171 | 170 | ralbii 3080 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈ ((
L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁)) |
172 | 162, 171 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁)) |
173 | 96 | 3mix1d 1337 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧)) |
174 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → (((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁) → 𝜁)) |
175 | 173, 174 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁) → 𝜁)) |
176 | 68, 175 | ralimda 3397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑤 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜁) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁)) |
177 | 172, 176 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁) |
178 | | ssun2 4063 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑥} ⊆ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) |
179 | | ssralv 3943 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑥} ⊆ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) → (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃))) |
180 | 178, 179 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
181 | 62 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
182 | 180, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
183 | 182 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
184 | | vex 3402 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑥 ∈ V |
185 | | neeq1 2996 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → (𝑤 ≠ 𝑥 ↔ 𝑥 ≠ 𝑥)) |
186 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → (𝑡 ≠ 𝑦 ↔ 𝑡 ≠ 𝑦)) |
187 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → (𝑢 ≠ 𝑧 ↔ 𝑢 ≠ 𝑧)) |
188 | 185, 186,
187 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑥 → ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) ↔ (𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧))) |
189 | | no3indslem.7 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑥 → (𝜃 ↔ 𝜎)) |
190 | 188, 189 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑥 → (((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎))) |
191 | 190 | 2ralbidv 3111 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎))) |
192 | 184, 191 | ralsn 4572 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎)) |
193 | 183, 192 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎)) |
194 | 78, 81 | nfan 1906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑢(((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) |
195 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → 𝑦 ∈ No
) |
196 | | leftirr 33711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈
No → ¬ 𝑦
∈ ( L ‘𝑦)) |
197 | 195, 196 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ 𝑦 ∈ ( L ‘𝑦)) |
198 | | rightirr 33712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈
No → ¬ 𝑦
∈ ( R ‘𝑦)) |
199 | 195, 198 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ 𝑦 ∈ ( R ‘𝑦)) |
200 | | ioran 983 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
(𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦)) ↔ (¬ 𝑦 ∈ ( L ‘𝑦) ∧ ¬ 𝑦 ∈ ( R ‘𝑦))) |
201 | 197, 199,
200 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦))) |
202 | | eleq1w 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ 𝑦 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))) |
203 | | elun 4039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦))) |
204 | 202, 203 | bitrdi 290 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦)))) |
205 | 204 | notbid 321 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑦 → (¬ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ ¬ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦)))) |
206 | 201, 205 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (𝑡 = 𝑦 → ¬ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))) |
207 | 206 | necon2ad 2949 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) → 𝑡 ≠ 𝑦)) |
208 | 207 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → 𝑡 ≠ 𝑦) |
209 | 208 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → 𝑡 ≠ 𝑦) |
210 | 209 | 3mix2d 1338 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
211 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → (((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) → 𝜎)) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑥 ∈ No ∧ 𝑦 ∈ No
∧ 𝑧 ∈ No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) → 𝜎)) |
213 | 194, 212 | ralimda 3397 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎)) |
214 | 71, 213 | ralimda 3397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎)) |
215 | 193, 214 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎) |
216 | 110 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
217 | 180, 216 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
218 | 217 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
219 | 190 | 2ralbidv 3111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎))) |
220 | 184, 219 | ralsn 4572 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎)) |
221 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑧 → (𝑥 ≠ 𝑥 ↔ 𝑥 ≠ 𝑥)) |
222 | 221, 116,
117 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) ↔ (𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧))) |
223 | | no3indslem.8 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (𝜎 ↔ 𝜌)) |
224 | 222, 223 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑧 → (((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) ↔ ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌))) |
225 | 114, 224 | ralsn 4572 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑢 ∈
{𝑧} ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) ↔ ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌)) |
226 | 225 | ralbii 3080 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑡 ∈ ((
L ‘𝑦) ∪ ( R
‘𝑦))∀𝑢 ∈ {𝑧} ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌)) |
227 | 220, 226 | bitri 278 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌)) |
228 | 218, 227 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌)) |
229 | 208 | 3mix2d 1338 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧)) |
230 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → (((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌) → 𝜌)) |
231 | 229, 230 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌) → 𝜌)) |
232 | 71, 231 | ralimda 3397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑧 ≠ 𝑧) → 𝜌) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌)) |
233 | 228, 232 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) |
234 | 177, 215,
233 | 3jca 1129 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌)) |
235 | 135 | ralimi 3075 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
236 | 180, 235 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
237 | 236 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) |
238 | 190 | 2ralbidv 3111 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎))) |
239 | 184, 238 | ralsn 4572 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎)) |
240 | | biidd 265 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑦 → (𝑥 ≠ 𝑥 ↔ 𝑥 ≠ 𝑥)) |
241 | 240, 141,
142 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑦 → ((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) ↔ (𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧))) |
242 | | no3indslem.9 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑦 → (𝜎 ↔ 𝜇)) |
243 | 241, 242 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑦 → (((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) ↔ ((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇))) |
244 | 243 | ralbidv 3109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑦 → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇))) |
245 | 139, 244 | ralsn 4572 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑡 ∈
{𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜎) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇)) |
246 | 239, 245 | bitri 278 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑤 ∈
{𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇)) |
247 | 237, 246 | sylib 221 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇)) |
248 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → 𝑧 ∈ No
) |
249 | | leftirr 33711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈
No → ¬ 𝑧
∈ ( L ‘𝑧)) |
250 | 248, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ 𝑧 ∈ ( L ‘𝑧)) |
251 | | rightirr 33712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈
No → ¬ 𝑧
∈ ( R ‘𝑧)) |
252 | 248, 251 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ 𝑧 ∈ ( R ‘𝑧)) |
253 | | ioran 983 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧)) ↔ (¬ 𝑧 ∈ ( L ‘𝑧) ∧ ¬ 𝑧 ∈ ( R ‘𝑧))) |
254 | 250, 252,
253 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ¬ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧))) |
255 | | eleq1w 2815 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑧 → (𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ 𝑧 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)))) |
256 | | elun 4039 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧))) |
257 | 255, 256 | bitrdi 290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑧 → (𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧)))) |
258 | 257 | notbid 321 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑧 → (¬ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ ¬ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧)))) |
259 | 254, 258 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (𝑢 = 𝑧 → ¬ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)))) |
260 | 259 | necon2ad 2949 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) → 𝑢 ≠ 𝑧)) |
261 | 260 | imp 410 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → 𝑢 ≠ 𝑧) |
262 | 261 | 3mix3d 1339 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧)) |
263 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → (((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇) → 𝜇)) |
264 | 262, 263 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇) → 𝜇)) |
265 | 78, 264 | ralimda 3397 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ≠ 𝑥 ∨ 𝑦 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜇) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇)) |
266 | 247, 265 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇) |
267 | 157, 234,
266 | 3jca 1129 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
∧ ∀𝑤 ∈ (((
L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃)) → ((∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇)) |
268 | 267 | ex 416 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → ((∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇))) |
269 | | no3indslem.i |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (((∀𝑤 ∈
(( L ‘𝑥) ∪ ( R
‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇) → 𝜒)) |
270 | 268, 269 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (∀𝑤 ∈
((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤 ≠ 𝑥 ∨ 𝑡 ≠ 𝑦 ∨ 𝑢 ≠ 𝑧) → 𝜃) → 𝜒)) |
271 | 51, 270 | syl5bi 245 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (∀𝑞 ∈
((((( L ‘𝑥) ∪ ( R
‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉} → 𝜓) → 𝜒)) |
272 | 36, 271 | sylbid 243 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (∀𝑞 ∈
Pred (𝑆, (( No × No ) ×
No ), 〈〈𝑥, 𝑦〉, 𝑧〉)𝜓 → 𝜒)) |
273 | | predeq3 6133 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → Pred(𝑆, (( No
× No ) × No
), 𝑝) = Pred(𝑆, (( No
× No ) × No ), 〈〈𝑥, 𝑦〉, 𝑧〉)) |
274 | 273 | raleqdv 3316 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 ↔ ∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 〈〈𝑥,
𝑦〉, 𝑧〉)𝜓)) |
275 | | no3indslem.2 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 ↔ 𝜒)) |
276 | 274, 275 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ((∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 → 𝜑) ↔ (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 〈〈𝑥,
𝑦〉, 𝑧〉)𝜓 → 𝜒))) |
277 | 272, 276 | syl5ibrcom 250 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (𝑝 =
〈〈𝑥, 𝑦〉, 𝑧〉 → (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 → 𝜑))) |
278 | 277 | 3expa 1119 |
. . . . . . . 8
⊢ (((𝑥 ∈
No ∧ 𝑦 ∈
No ) ∧ 𝑧 ∈ No )
→ (𝑝 =
〈〈𝑥, 𝑦〉, 𝑧〉 → (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 → 𝜑))) |
279 | 278 | rexlimdva 3194 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ) → (∃𝑧 ∈ No
𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 → 𝜑))) |
280 | 279 | rexlimivv 3202 |
. . . . . 6
⊢
(∃𝑥 ∈
No ∃𝑦 ∈ No
∃𝑧 ∈ No 𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 → 𝜑)) |
281 | 15, 280 | sylbi 220 |
. . . . 5
⊢ (𝑝 ∈ ((
No × No ) × No ) → (∀𝑞 ∈ Pred (𝑆, (( No
× No ) × No
), 𝑝)𝜓 → 𝜑)) |
282 | | no3indslem.1 |
. . . . 5
⊢ (𝑝 = 𝑞 → (𝜑 ↔ 𝜓)) |
283 | 281, 282 | frpoins2g 33386 |
. . . 4
⊢ ((𝑆 Fr (( No
× No ) × No ) ∧ 𝑆 Po (( No
× No ) × No
) ∧ 𝑆 Se (( No × No ) ×
No )) → ∀𝑝 ∈ (( No
× No ) × No
)𝜑) |
284 | 6, 10, 14, 283 | mp3an 1462 |
. . 3
⊢
∀𝑝 ∈
(( No × No )
× No )𝜑 |
285 | 275 | ralxp3 33260 |
. . 3
⊢
(∀𝑝 ∈
(( No × No )
× No )𝜑 ↔ ∀𝑥 ∈ No
∀𝑦 ∈ No ∀𝑧 ∈ No
𝜒) |
286 | 284, 285 | mpbi 233 |
. 2
⊢
∀𝑥 ∈
No ∀𝑦 ∈ No
∀𝑧 ∈ No 𝜒 |
287 | | no3indslem.10 |
. . 3
⊢ (𝑥 = 𝐴 → (𝜒 ↔ 𝜆)) |
288 | | no3indslem.11 |
. . 3
⊢ (𝑦 = 𝐵 → (𝜆 ↔ 𝜅)) |
289 | | no3indslem.12 |
. . 3
⊢ (𝑧 = 𝐶 → (𝜅 ↔ 𝛻)) |
290 | 287, 288,
289 | rspc3v 3539 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ (∀𝑥 ∈
No ∀𝑦 ∈ No
∀𝑧 ∈ No 𝜒
→ 𝛻)) |
291 | 286, 290 | mpi 20 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐶 ∈ No )
→ 𝛻) |