Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  no3indslem Structured version   Visualization version   GIF version

Theorem no3indslem 33752
Description: Triple induction over surreal numbers. Lemma with explicit relationship. (Contributed by Scott Fenton, 21-Aug-2024.)
Hypotheses
Ref Expression
no3indslem.a 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
no3indslem.b 𝑆 = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ (( No × No ) × No ) ∧ 𝑑 ∈ (( No × No ) × No ) ∧ ((((1st ‘(1st𝑐))𝑅(1st ‘(1st𝑑)) ∨ (1st ‘(1st𝑐)) = (1st ‘(1st𝑑))) ∧ ((2nd ‘(1st𝑐))𝑅(2nd ‘(1st𝑑)) ∨ (2nd ‘(1st𝑐)) = (2nd ‘(1st𝑑))) ∧ ((2nd𝑐)𝑅(2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑))) ∧ 𝑐𝑑))}
no3indslem.1 (𝑝 = 𝑞 → (𝜑𝜓))
no3indslem.2 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜒))
no3indslem.3 (𝑞 = ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ → (𝜓𝜃))
no3indslem.4 (𝑢 = 𝑧 → (𝜃𝜏))
no3indslem.5 (𝑡 = 𝑦 → (𝜃𝜂))
no3indslem.6 (𝑢 = 𝑧 → (𝜂𝜁))
no3indslem.7 (𝑤 = 𝑥 → (𝜃𝜎))
no3indslem.8 (𝑢 = 𝑧 → (𝜎𝜌))
no3indslem.9 (𝑡 = 𝑦 → (𝜎𝜇))
no3indslem.10 (𝑥 = 𝐴 → (𝜒𝜆))
no3indslem.11 (𝑦 = 𝐵 → (𝜆𝜅))
no3indslem.12 (𝑧 = 𝐶 → (𝜅𝛻))
no3indslem.i ((𝑥 No 𝑦 No 𝑧 No ) → (((∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇) → 𝜒))
Assertion
Ref Expression
no3indslem ((𝐴 No 𝐵 No 𝐶 No ) → 𝛻)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑦,𝑎   𝑦,𝐴   𝑧,𝑎   𝑧,𝐴   𝑧,𝛻   𝑥,𝑏,𝑦   𝑦,𝐵   𝑧,𝑏   𝑧,𝐵   𝑐,𝑑   𝑧,𝐶   𝜒,𝑝   𝜅,𝑦   𝜆,𝑥   𝜓,𝑝   𝑞,𝑝,𝑥,𝑦,𝑧   𝜑,𝑞,𝑥,𝑦,𝑧   𝜓,𝑡,𝑢,𝑤,𝑥,𝑦,𝑧   𝑡,𝑞   𝜃,𝑞,𝑢   𝑤,𝑞,𝑥,𝑦,𝑧   𝑅,𝑐,𝑑   𝑆,𝑝,𝑞,𝑥,𝑦,𝑧   𝑢,𝑡,𝑤,𝑥,𝑦,𝑧   𝜇,𝑡   𝜎,𝑤   𝜂,𝑡   𝜌,𝑢   𝜏,𝑢   𝜃,𝑢   𝜁,𝑢
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑡,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑞,𝑎,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑤,𝑢,𝑡,𝑞,𝑎,𝑏,𝑐,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑤,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑤,𝑢,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑥,𝑦,𝑧,𝑤,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑥,𝑦,𝑧,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑥,𝑦,𝑧,𝑤,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜇(𝑥,𝑦,𝑧,𝑤,𝑢,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜆(𝑦,𝑧,𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝜅(𝑥,𝑧,𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑥,𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑥,𝑦,𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏)   𝑆(𝑤,𝑢,𝑡,𝑎,𝑏,𝑐,𝑑)   𝛻(𝑥,𝑦,𝑤,𝑢,𝑡,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem no3indslem
StepHypRef Expression
1 no3indslem.b . . . . . 6 𝑆 = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ (( No × No ) × No ) ∧ 𝑑 ∈ (( No × No ) × No ) ∧ ((((1st ‘(1st𝑐))𝑅(1st ‘(1st𝑑)) ∨ (1st ‘(1st𝑐)) = (1st ‘(1st𝑑))) ∧ ((2nd ‘(1st𝑐))𝑅(2nd ‘(1st𝑑)) ∨ (2nd ‘(1st𝑐)) = (2nd ‘(1st𝑑))) ∧ ((2nd𝑐)𝑅(2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑))) ∧ 𝑐𝑑))}
2 no3indslem.a . . . . . . . 8 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
32lrrecfr 33737 . . . . . . 7 𝑅 Fr No
43a1i 11 . . . . . 6 (⊤ → 𝑅 Fr No )
51, 4, 4, 4frxp3 33408 . . . . 5 (⊤ → 𝑆 Fr (( No × No ) × No ))
65mptru 1549 . . . 4 𝑆 Fr (( No × No ) × No )
72lrrecpo 33735 . . . . . . 7 𝑅 Po No
87a1i 11 . . . . . 6 (⊤ → 𝑅 Po No )
91, 8, 8, 8poxp3 33407 . . . . 5 (⊤ → 𝑆 Po (( No × No ) × No ))
109mptru 1549 . . . 4 𝑆 Po (( No × No ) × No )
112lrrecse 33736 . . . . . . 7 𝑅 Se No
1211a1i 11 . . . . . 6 (⊤ → 𝑅 Se No )
131, 12, 12, 12sexp3 33410 . . . . 5 (⊤ → 𝑆 Se (( No × No ) × No ))
1413mptru 1549 . . . 4 𝑆 Se (( No × No ) × No )
15 elxpxp 33257 . . . . . 6 (𝑝 ∈ (( No × No ) × No ) ↔ ∃𝑥 No 𝑦 No 𝑧 No 𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
161xpord3pred 33409 . . . . . . . . . . . . . 14 ((𝑥 No 𝑦 No 𝑧 No ) → Pred(𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) = ((((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) × (Pred(𝑅, No , 𝑧) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}))
172lrrecpred 33738 . . . . . . . . . . . . . . . . . . 19 (𝑥 No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
18173ad2ant1 1134 . . . . . . . . . . . . . . . . . 18 ((𝑥 No 𝑦 No 𝑧 No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
1918uneq1d 4052 . . . . . . . . . . . . . . . . 17 ((𝑥 No 𝑦 No 𝑧 No ) → (Pred(𝑅, No , 𝑥) ∪ {𝑥}) = ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}))
202lrrecpred 33738 . . . . . . . . . . . . . . . . . . 19 (𝑦 No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
21203ad2ant2 1135 . . . . . . . . . . . . . . . . . 18 ((𝑥 No 𝑦 No 𝑧 No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
2221uneq1d 4052 . . . . . . . . . . . . . . . . 17 ((𝑥 No 𝑦 No 𝑧 No ) → (Pred(𝑅, No , 𝑦) ∪ {𝑦}) = ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦}))
2319, 22xpeq12d 5556 . . . . . . . . . . . . . . . 16 ((𝑥 No 𝑦 No 𝑧 No ) → ((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) = (((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})))
242lrrecpred 33738 . . . . . . . . . . . . . . . . . 18 (𝑧 No → Pred(𝑅, No , 𝑧) = (( L ‘𝑧) ∪ ( R ‘𝑧)))
25243ad2ant3 1136 . . . . . . . . . . . . . . . . 17 ((𝑥 No 𝑦 No 𝑧 No ) → Pred(𝑅, No , 𝑧) = (( L ‘𝑧) ∪ ( R ‘𝑧)))
2625uneq1d 4052 . . . . . . . . . . . . . . . 16 ((𝑥 No 𝑦 No 𝑧 No ) → (Pred(𝑅, No , 𝑧) ∪ {𝑧}) = ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))
2723, 26xpeq12d 5556 . . . . . . . . . . . . . . 15 ((𝑥 No 𝑦 No 𝑧 No ) → (((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) × (Pred(𝑅, No , 𝑧) ∪ {𝑧})) = ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})))
2827difeq1d 4012 . . . . . . . . . . . . . 14 ((𝑥 No 𝑦 No 𝑧 No ) → ((((Pred(𝑅, No , 𝑥) ∪ {𝑥}) × (Pred(𝑅, No , 𝑦) ∪ {𝑦})) × (Pred(𝑅, No , 𝑧) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}) = (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}))
2916, 28eqtrd 2773 . . . . . . . . . . . . 13 ((𝑥 No 𝑦 No 𝑧 No ) → Pred(𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) = (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}))
3029raleqdv 3316 . . . . . . . . . . . 12 ((𝑥 No 𝑦 No 𝑧 No ) → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)𝜓 ↔ ∀𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩})𝜓))
31 eldif 3853 . . . . . . . . . . . . . . 15 (𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}) ↔ (𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∧ ¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}))
3231imbi1i 353 . . . . . . . . . . . . . 14 ((𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}) → 𝜓) ↔ ((𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∧ ¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}) → 𝜓))
33 impexp 454 . . . . . . . . . . . . . 14 (((𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∧ ¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}) → 𝜓) ↔ (𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) → (¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓)))
3432, 33bitri 278 . . . . . . . . . . . . 13 ((𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}) → 𝜓) ↔ (𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) → (¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓)))
3534ralbii2 3078 . . . . . . . . . . . 12 (∀𝑞 ∈ (((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})) ∖ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩})𝜓 ↔ ∀𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓))
3630, 35bitrdi 290 . . . . . . . . . . 11 ((𝑥 No 𝑦 No 𝑧 No ) → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)𝜓 ↔ ∀𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓)))
37 eleq1 2820 . . . . . . . . . . . . . . . 16 (𝑞 = ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ → (𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} ↔ ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}))
3837notbid 321 . . . . . . . . . . . . . . 15 (𝑞 = ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ → (¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} ↔ ¬ ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩}))
39 df-ne 2935 . . . . . . . . . . . . . . . . 17 (⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ≠ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ¬ ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
40 vex 3402 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
41 vex 3402 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ V
42 vex 3402 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
4340, 41, 42otthne 33256 . . . . . . . . . . . . . . . . 17 (⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ≠ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑤𝑥𝑡𝑦𝑢𝑧))
4439, 43bitr3i 280 . . . . . . . . . . . . . . . 16 (¬ ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑤𝑥𝑡𝑦𝑢𝑧))
45 opex 5322 . . . . . . . . . . . . . . . . 17 ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ∈ V
4645elsn 4531 . . . . . . . . . . . . . . . 16 (⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} ↔ ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
4744, 46xchnxbir 336 . . . . . . . . . . . . . . 15 (¬ ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} ↔ (𝑤𝑥𝑡𝑦𝑢𝑧))
4838, 47bitrdi 290 . . . . . . . . . . . . . 14 (𝑞 = ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ → (¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} ↔ (𝑤𝑥𝑡𝑦𝑢𝑧)))
49 no3indslem.3 . . . . . . . . . . . . . 14 (𝑞 = ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ → (𝜓𝜃))
5048, 49imbi12d 348 . . . . . . . . . . . . 13 (𝑞 = ⟨⟨𝑤, 𝑡⟩, 𝑢⟩ → ((¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓) ↔ ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
5150ralxp3 33260 . . . . . . . . . . . 12 (∀𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓) ↔ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
52 ssun1 4062 . . . . . . . . . . . . . . . . . . . 20 (( L ‘𝑥) ∪ ( R ‘𝑥)) ⊆ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})
53 ssralv 3943 . . . . . . . . . . . . . . . . . . . 20 ((( L ‘𝑥) ∪ ( R ‘𝑥)) ⊆ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) → (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
55 ssun1 4062 . . . . . . . . . . . . . . . . . . . . . 22 (( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})
56 ssralv 3943 . . . . . . . . . . . . . . . . . . . . . 22 ((( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦}) → (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
58 ssun1 4062 . . . . . . . . . . . . . . . . . . . . . . 23 (( L ‘𝑧) ∪ ( R ‘𝑧)) ⊆ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})
59 ssralv 3943 . . . . . . . . . . . . . . . . . . . . . . 23 ((( L ‘𝑧) ∪ ( R ‘𝑧)) ⊆ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}) → (∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
6160ralimi 3075 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
6257, 61syl 17 . . . . . . . . . . . . . . . . . . . 20 (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
6362ralimi 3075 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
6454, 63syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
6564adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
66 nfv 1921 . . . . . . . . . . . . . . . . . . 19 𝑤(𝑥 No 𝑦 No 𝑧 No )
67 nfra1 3131 . . . . . . . . . . . . . . . . . . 19 𝑤𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)
6866, 67nfan 1906 . . . . . . . . . . . . . . . . . 18 𝑤((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
69 nfv 1921 . . . . . . . . . . . . . . . . . . . . 21 𝑡(𝑥 No 𝑦 No 𝑧 No )
70 nfra2w 3140 . . . . . . . . . . . . . . . . . . . . 21 𝑡𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)
7169, 70nfan 1906 . . . . . . . . . . . . . . . . . . . 20 𝑡((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
72 nfv 1921 . . . . . . . . . . . . . . . . . . . 20 𝑡 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))
7371, 72nfan 1906 . . . . . . . . . . . . . . . . . . 19 𝑡(((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
74 nfv 1921 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢(𝑥 No 𝑦 No 𝑧 No )
75 nfcv 2899 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑢((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})
76 nfra2w 3140 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑢𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)
7775, 76nfralw 3138 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)
7874, 77nfan 1906 . . . . . . . . . . . . . . . . . . . . . 22 𝑢((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
79 nfv 1921 . . . . . . . . . . . . . . . . . . . . . 22 𝑢 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))
8078, 79nfan 1906 . . . . . . . . . . . . . . . . . . . . 21 𝑢(((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
81 nfv 1921 . . . . . . . . . . . . . . . . . . . . 21 𝑢 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))
8280, 81nfan 1906 . . . . . . . . . . . . . . . . . . . 20 𝑢((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
83 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → 𝑥 No )
84 leftirr 33711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 No → ¬ 𝑥 ∈ ( L ‘𝑥))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ 𝑥 ∈ ( L ‘𝑥))
86 rightirr 33712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 No → ¬ 𝑥 ∈ ( R ‘𝑥))
8783, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ 𝑥 ∈ ( R ‘𝑥))
88 ioran 983 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥)) ↔ (¬ 𝑥 ∈ ( L ‘𝑥) ∧ ¬ 𝑥 ∈ ( R ‘𝑥)))
8985, 87, 88sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥)))
90 eleq1w 2815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → (𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ 𝑥 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))))
91 elun 4039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥)))
9290, 91bitrdi 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑥 → (𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥))))
9392notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑥 → (¬ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) ↔ ¬ (𝑥 ∈ ( L ‘𝑥) ∨ 𝑥 ∈ ( R ‘𝑥))))
9489, 93syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (𝑤 = 𝑥 → ¬ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))))
9594necon2ad 2949 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)) → 𝑤𝑥))
9695imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → 𝑤𝑥)
97963mix1d 1337 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤𝑥𝑡𝑦𝑢𝑧))
9897adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑤𝑥𝑡𝑦𝑢𝑧))
9998adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑤𝑥𝑡𝑦𝑢𝑧))
100 pm2.27 42 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑥𝑡𝑦𝑢𝑧) → (((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → 𝜃))
10199, 100syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → 𝜃))
10282, 101ralimda 3397 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃))
10373, 102ralimda 3397 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃))
10468, 103ralimda 3397 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃))
10565, 104mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃)
106 ssun2 4063 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧} ⊆ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})
107 ssralv 3943 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑧} ⊆ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}) → (∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
109108ralimi 3075 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
11057, 109syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
111110ralimi 3075 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
11254, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
113112adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
114 vex 3402 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
115 biidd 265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (𝑤𝑥𝑤𝑥))
116 biidd 265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (𝑡𝑦𝑡𝑦))
117 neeq1 2996 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (𝑢𝑧𝑧𝑧))
118115, 116, 1173orbi123d 1436 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → ((𝑤𝑥𝑡𝑦𝑢𝑧) ↔ (𝑤𝑥𝑡𝑦𝑧𝑧)))
119 no3indslem.4 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → (𝜃𝜏))
120118, 119imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏)))
121114, 120ralsn 4572 . . . . . . . . . . . . . . . . . . 19 (∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏))
1221212ralbii 3081 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏))
123113, 122sylib 221 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏))
124963mix1d 1337 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤𝑥𝑡𝑦𝑧𝑧))
125124adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑤𝑥𝑡𝑦𝑧𝑧))
126 pm2.27 42 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑥𝑡𝑦𝑧𝑧) → (((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏) → 𝜏))
127125, 126syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏) → 𝜏))
12873, 127ralimda 3397 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏))
12968, 128ralimda 3397 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑤𝑥𝑡𝑦𝑧𝑧) → 𝜏) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏))
130123, 129mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏)
131 ssun2 4063 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑦} ⊆ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})
132 ssralv 3943 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑦} ⊆ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦}) → (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
133131, 132ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
13460ralimi 3075 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑡 ∈ {𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
135133, 134syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
136135ralimi 3075 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
13754, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
138137adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
139 vex 3402 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
140 biidd 265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑦 → (𝑤𝑥𝑤𝑥))
141 neeq1 2996 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑦 → (𝑡𝑦𝑦𝑦))
142 biidd 265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑦 → (𝑢𝑧𝑢𝑧))
143140, 141, 1423orbi123d 1436 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑦 → ((𝑤𝑥𝑡𝑦𝑢𝑧) ↔ (𝑤𝑥𝑦𝑦𝑢𝑧)))
144 no3indslem.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑦 → (𝜃𝜂))
145143, 144imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑦 → (((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂)))
146145ralbidv 3109 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑦 → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂)))
147139, 146ralsn 4572 . . . . . . . . . . . . . . . . . . 19 (∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂))
148147ralbii 3080 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂))
149138, 148sylib 221 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂))
150963mix1d 1337 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤𝑥𝑦𝑦𝑢𝑧))
151150adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑤𝑥𝑦𝑦𝑢𝑧))
152 pm2.27 42 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑥𝑦𝑦𝑢𝑧) → (((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂) → 𝜂))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂) → 𝜂))
15480, 153ralimda 3397 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂))
15568, 154ralimda 3397 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂))
156149, 155mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂)
157105, 130, 1563jca 1129 . . . . . . . . . . . . . . 15 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂))
158108ralimi 3075 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑡 ∈ {𝑦}∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
159133, 158syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
160159ralimi 3075 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
16154, 160syl 17 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
162161adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
163145ralbidv 3109 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑦 → (∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂)))
164139, 163ralsn 4572 . . . . . . . . . . . . . . . . . . . 20 (∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂))
165 biidd 265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (𝑦𝑦𝑦𝑦))
166115, 165, 1173orbi123d 1436 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → ((𝑤𝑥𝑦𝑦𝑢𝑧) ↔ (𝑤𝑥𝑦𝑦𝑧𝑧)))
167 no3indslem.6 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (𝜂𝜁))
168166, 167imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → (((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂) ↔ ((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁)))
169114, 168ralsn 4572 . . . . . . . . . . . . . . . . . . . 20 (∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑦𝑦𝑢𝑧) → 𝜂) ↔ ((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁))
170164, 169bitri 278 . . . . . . . . . . . . . . . . . . 19 (∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁))
171170ralbii 3080 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ {𝑦}∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁))
172162, 171sylib 221 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁))
173963mix1d 1337 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (𝑤𝑥𝑦𝑦𝑧𝑧))
174 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑥𝑦𝑦𝑧𝑧) → (((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁) → 𝜁))
175173, 174syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) → (((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁) → 𝜁))
17668, 175ralimda 3397 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑤𝑥𝑦𝑦𝑧𝑧) → 𝜁) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁))
177172, 176mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁)
178 ssun2 4063 . . . . . . . . . . . . . . . . . . . . 21 {𝑥} ⊆ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})
179 ssralv 3943 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥} ⊆ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) → (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)))
180178, 179ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
18162ralimi 3075 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
182180, 181syl 17 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
183182adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
184 vex 3402 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
185 neeq1 2996 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (𝑤𝑥𝑥𝑥))
186 biidd 265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (𝑡𝑦𝑡𝑦))
187 biidd 265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (𝑢𝑧𝑢𝑧))
188185, 186, 1873orbi123d 1436 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → ((𝑤𝑥𝑡𝑦𝑢𝑧) ↔ (𝑥𝑥𝑡𝑦𝑢𝑧)))
189 no3indslem.7 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → (𝜃𝜎))
190188, 189imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → (((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎)))
1911902ralbidv 3111 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎)))
192184, 191ralsn 4572 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎))
193183, 192sylib 221 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎))
19478, 81nfan 1906 . . . . . . . . . . . . . . . . . . 19 𝑢(((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
195 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → 𝑦 No )
196 leftirr 33711 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 No → ¬ 𝑦 ∈ ( L ‘𝑦))
197195, 196syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ 𝑦 ∈ ( L ‘𝑦))
198 rightirr 33712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 No → ¬ 𝑦 ∈ ( R ‘𝑦))
199195, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ 𝑦 ∈ ( R ‘𝑦))
200 ioran 983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦)) ↔ (¬ 𝑦 ∈ ( L ‘𝑦) ∧ ¬ 𝑦 ∈ ( R ‘𝑦)))
201197, 199, 200sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦)))
202 eleq1w 2815 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑦 → (𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ 𝑦 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))))
203 elun 4039 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦)))
204202, 203bitrdi 290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑦 → (𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦))))
205204notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑦 → (¬ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) ↔ ¬ (𝑦 ∈ ( L ‘𝑦) ∨ 𝑦 ∈ ( R ‘𝑦))))
206201, 205syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (𝑡 = 𝑦 → ¬ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))))
207206necon2ad 2949 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)) → 𝑡𝑦))
208207imp 410 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → 𝑡𝑦)
209208adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → 𝑡𝑦)
2102093mix2d 1338 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑥𝑥𝑡𝑦𝑢𝑧))
211 pm2.27 42 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑥𝑡𝑦𝑢𝑧) → (((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) → 𝜎))
212210, 211syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) → 𝜎))
213194, 212ralimda 3397 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎))
21471, 213ralimda 3397 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎))
215193, 214mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎)
216110ralimi 3075 . . . . . . . . . . . . . . . . . . . 20 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
217180, 216syl 17 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
218217adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
2191902ralbidv 3111 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎)))
220184, 219ralsn 4572 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎))
221 biidd 265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (𝑥𝑥𝑥𝑥))
222221, 116, 1173orbi123d 1436 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → ((𝑥𝑥𝑡𝑦𝑢𝑧) ↔ (𝑥𝑥𝑡𝑦𝑧𝑧)))
223 no3indslem.8 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (𝜎𝜌))
224222, 223imbi12d 348 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → (((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) ↔ ((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌)))
225114, 224ralsn 4572 . . . . . . . . . . . . . . . . . . . 20 (∀𝑢 ∈ {𝑧} ((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) ↔ ((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌))
226225ralbii 3080 . . . . . . . . . . . . . . . . . . 19 (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌))
227220, 226bitri 278 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ {𝑧} ((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌))
228218, 227sylib 221 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌))
2292083mix2d 1338 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (𝑥𝑥𝑡𝑦𝑧𝑧))
230 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑥𝑡𝑦𝑧𝑧) → (((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌) → 𝜌))
231229, 230syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) → (((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌) → 𝜌))
23271, 231ralimda 3397 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑥𝑡𝑦𝑧𝑧) → 𝜌) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌))
233228, 232mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌)
234177, 215, 2333jca 1129 . . . . . . . . . . . . . . 15 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌))
235135ralimi 3075 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
236180, 235syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
237236adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃))
2381902ralbidv 3111 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎)))
239184, 238ralsn 4572 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎))
240 biidd 265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑦 → (𝑥𝑥𝑥𝑥))
241240, 141, 1423orbi123d 1436 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑦 → ((𝑥𝑥𝑡𝑦𝑢𝑧) ↔ (𝑥𝑥𝑦𝑦𝑢𝑧)))
242 no3indslem.9 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑦 → (𝜎𝜇))
243241, 242imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑦 → (((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) ↔ ((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇)))
244243ralbidv 3109 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇)))
245139, 244ralsn 4572 . . . . . . . . . . . . . . . . . 18 (∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑡𝑦𝑢𝑧) → 𝜎) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇))
246239, 245bitri 278 . . . . . . . . . . . . . . . . 17 (∀𝑤 ∈ {𝑥}∀𝑡 ∈ {𝑦}∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) ↔ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇))
247237, 246sylib 221 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇))
248 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → 𝑧 No )
249 leftirr 33711 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 No → ¬ 𝑧 ∈ ( L ‘𝑧))
250248, 249syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ 𝑧 ∈ ( L ‘𝑧))
251 rightirr 33712 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 No → ¬ 𝑧 ∈ ( R ‘𝑧))
252248, 251syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ 𝑧 ∈ ( R ‘𝑧))
253 ioran 983 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧)) ↔ (¬ 𝑧 ∈ ( L ‘𝑧) ∧ ¬ 𝑧 ∈ ( R ‘𝑧)))
254250, 252, 253sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ¬ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧)))
255 eleq1w 2815 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑧 → (𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ 𝑧 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))))
256 elun 4039 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧)))
257255, 256bitrdi 290 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧))))
258257notbid 321 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (¬ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) ↔ ¬ (𝑧 ∈ ( L ‘𝑧) ∨ 𝑧 ∈ ( R ‘𝑧))))
259254, 258syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (𝑢 = 𝑧 → ¬ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))))
260259necon2ad 2949 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧)) → 𝑢𝑧))
261260imp 410 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → 𝑢𝑧)
2622613mix3d 1339 . . . . . . . . . . . . . . . . . 18 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (𝑥𝑥𝑦𝑦𝑢𝑧))
263 pm2.27 42 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑥𝑦𝑦𝑢𝑧) → (((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇) → 𝜇))
264262, 263syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) ∧ 𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))) → (((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇) → 𝜇))
26578, 264ralimda 3397 . . . . . . . . . . . . . . . 16 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → (∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑥𝑦𝑦𝑢𝑧) → 𝜇) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇))
266247, 265mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇)
267157, 234, 2663jca 1129 . . . . . . . . . . . . . 14 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃)) → ((∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇))
268267ex 416 . . . . . . . . . . . . 13 ((𝑥 No 𝑦 No 𝑧 No ) → (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → ((∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇)))
269 no3indslem.i . . . . . . . . . . . . 13 ((𝑥 No 𝑦 No 𝑧 No ) → (((∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜃 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜏 ∧ ∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜂) ∧ (∀𝑤 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜁 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜎 ∧ ∀𝑡 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜌) ∧ ∀𝑢 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))𝜇) → 𝜒))
270268, 269syld 47 . . . . . . . . . . . 12 ((𝑥 No 𝑦 No 𝑧 No ) → (∀𝑤 ∈ ((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥})∀𝑡 ∈ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})∀𝑢 ∈ ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧})((𝑤𝑥𝑡𝑦𝑢𝑧) → 𝜃) → 𝜒))
27151, 270syl5bi 245 . . . . . . . . . . 11 ((𝑥 No 𝑦 No 𝑧 No ) → (∀𝑞 ∈ ((((( L ‘𝑥) ∪ ( R ‘𝑥)) ∪ {𝑥}) × ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ {𝑦})) × ((( L ‘𝑧) ∪ ( R ‘𝑧)) ∪ {𝑧}))(¬ 𝑞 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩} → 𝜓) → 𝜒))
27236, 271sylbid 243 . . . . . . . . . 10 ((𝑥 No 𝑦 No 𝑧 No ) → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)𝜓𝜒))
273 predeq3 6133 . . . . . . . . . . . 12 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → Pred(𝑆, (( No × No ) × No ), 𝑝) = Pred(𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
274273raleqdv 3316 . . . . . . . . . . 11 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓 ↔ ∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)𝜓))
275 no3indslem.2 . . . . . . . . . . 11 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜒))
276274, 275imbi12d 348 . . . . . . . . . 10 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ((∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓𝜑) ↔ (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)𝜓𝜒)))
277272, 276syl5ibrcom 250 . . . . . . . . 9 ((𝑥 No 𝑦 No 𝑧 No ) → (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓𝜑)))
2782773expa 1119 . . . . . . . 8 (((𝑥 No 𝑦 No ) ∧ 𝑧 No ) → (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓𝜑)))
279278rexlimdva 3194 . . . . . . 7 ((𝑥 No 𝑦 No ) → (∃𝑧 No 𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓𝜑)))
280279rexlimivv 3202 . . . . . 6 (∃𝑥 No 𝑦 No 𝑧 No 𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓𝜑))
28115, 280sylbi 220 . . . . 5 (𝑝 ∈ (( No × No ) × No ) → (∀𝑞 ∈ Pred (𝑆, (( No × No ) × No ), 𝑝)𝜓𝜑))
282 no3indslem.1 . . . . 5 (𝑝 = 𝑞 → (𝜑𝜓))
283281, 282frpoins2g 33386 . . . 4 ((𝑆 Fr (( No × No ) × No ) ∧ 𝑆 Po (( No × No ) × No ) ∧ 𝑆 Se (( No × No ) × No )) → ∀𝑝 ∈ (( No × No ) × No )𝜑)
2846, 10, 14, 283mp3an 1462 . . 3 𝑝 ∈ (( No × No ) × No )𝜑
285275ralxp3 33260 . . 3 (∀𝑝 ∈ (( No × No ) × No )𝜑 ↔ ∀𝑥 No 𝑦 No 𝑧 No 𝜒)
286284, 285mpbi 233 . 2 𝑥 No 𝑦 No 𝑧 No 𝜒
287 no3indslem.10 . . 3 (𝑥 = 𝐴 → (𝜒𝜆))
288 no3indslem.11 . . 3 (𝑦 = 𝐵 → (𝜆𝜅))
289 no3indslem.12 . . 3 (𝑧 = 𝐶 → (𝜅𝛻))
290287, 288, 289rspc3v 3539 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (∀𝑥 No 𝑦 No 𝑧 No 𝜒𝛻))
291286, 290mpi 20 1 ((𝐴 No 𝐵 No 𝐶 No ) → 𝛻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  w3o 1087  w3a 1088   = wceq 1542  wtru 1543  wcel 2114  wne 2934  wral 3053  wrex 3054  cdif 3840  cun 3841  wss 3843  {csn 4516  cop 4522   class class class wbr 5030  {copab 5092   Po wpo 5440   Fr wfr 5480   Se wse 5481   × cxp 5523  Predcpred 6128  cfv 6339  1st c1st 7712  2nd c2nd 7713   No csur 33484   L cleft 33670   R cright 33671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-1o 8131  df-2o 8132  df-no 33487  df-slt 33488  df-bday 33489  df-sslt 33617  df-scut 33619  df-made 33672  df-old 33673  df-left 33675  df-right 33676
This theorem is referenced by:  no3inds  33753
  Copyright terms: Public domain W3C validator