![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qden1elz | Structured version Visualization version GIF version |
Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
qden1elz | β’ (π΄ β β β ((denomβπ΄) = 1 β π΄ β β€)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qeqnumdivden 16727 | . . . . 5 β’ (π΄ β β β π΄ = ((numerβπ΄) / (denomβπ΄))) | |
2 | 1 | adantr 479 | . . . 4 β’ ((π΄ β β β§ (denomβπ΄) = 1) β π΄ = ((numerβπ΄) / (denomβπ΄))) |
3 | oveq2 7434 | . . . . 5 β’ ((denomβπ΄) = 1 β ((numerβπ΄) / (denomβπ΄)) = ((numerβπ΄) / 1)) | |
4 | 3 | adantl 480 | . . . 4 β’ ((π΄ β β β§ (denomβπ΄) = 1) β ((numerβπ΄) / (denomβπ΄)) = ((numerβπ΄) / 1)) |
5 | qnumcl 16721 | . . . . . . 7 β’ (π΄ β β β (numerβπ΄) β β€) | |
6 | 5 | adantr 479 | . . . . . 6 β’ ((π΄ β β β§ (denomβπ΄) = 1) β (numerβπ΄) β β€) |
7 | 6 | zcnd 12707 | . . . . 5 β’ ((π΄ β β β§ (denomβπ΄) = 1) β (numerβπ΄) β β) |
8 | 7 | div1d 12022 | . . . 4 β’ ((π΄ β β β§ (denomβπ΄) = 1) β ((numerβπ΄) / 1) = (numerβπ΄)) |
9 | 2, 4, 8 | 3eqtrd 2772 | . . 3 β’ ((π΄ β β β§ (denomβπ΄) = 1) β π΄ = (numerβπ΄)) |
10 | 9, 6 | eqeltrd 2829 | . 2 β’ ((π΄ β β β§ (denomβπ΄) = 1) β π΄ β β€) |
11 | simpr 483 | . . . . . . 7 β’ ((π΄ β β β§ π΄ β β€) β π΄ β β€) | |
12 | 11 | zcnd 12707 | . . . . . 6 β’ ((π΄ β β β§ π΄ β β€) β π΄ β β) |
13 | 12 | div1d 12022 | . . . . 5 β’ ((π΄ β β β§ π΄ β β€) β (π΄ / 1) = π΄) |
14 | 13 | fveq2d 6906 | . . . 4 β’ ((π΄ β β β§ π΄ β β€) β (denomβ(π΄ / 1)) = (denomβπ΄)) |
15 | 1nn 12263 | . . . . 5 β’ 1 β β | |
16 | divdenle 16730 | . . . . 5 β’ ((π΄ β β€ β§ 1 β β) β (denomβ(π΄ / 1)) β€ 1) | |
17 | 11, 15, 16 | sylancl 584 | . . . 4 β’ ((π΄ β β β§ π΄ β β€) β (denomβ(π΄ / 1)) β€ 1) |
18 | 14, 17 | eqbrtrrd 5176 | . . 3 β’ ((π΄ β β β§ π΄ β β€) β (denomβπ΄) β€ 1) |
19 | qdencl 16722 | . . . . 5 β’ (π΄ β β β (denomβπ΄) β β) | |
20 | 19 | adantr 479 | . . . 4 β’ ((π΄ β β β§ π΄ β β€) β (denomβπ΄) β β) |
21 | nnle1eq1 12282 | . . . 4 β’ ((denomβπ΄) β β β ((denomβπ΄) β€ 1 β (denomβπ΄) = 1)) | |
22 | 20, 21 | syl 17 | . . 3 β’ ((π΄ β β β§ π΄ β β€) β ((denomβπ΄) β€ 1 β (denomβπ΄) = 1)) |
23 | 18, 22 | mpbid 231 | . 2 β’ ((π΄ β β β§ π΄ β β€) β (denomβπ΄) = 1) |
24 | 10, 23 | impbida 799 | 1 β’ (π΄ β β β ((denomβπ΄) = 1 β π΄ β β€)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 class class class wbr 5152 βcfv 6553 (class class class)co 7426 1c1 11149 β€ cle 11289 / cdiv 11911 βcn 12252 β€cz 12598 βcq 12972 numercnumer 16714 denomcdenom 16715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-z 12599 df-uz 12863 df-q 12973 df-rp 13017 df-fl 13799 df-mod 13877 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-dvds 16241 df-gcd 16479 df-numer 16716 df-denom 16717 |
This theorem is referenced by: zsqrtelqelz 16739 oexpreposd 41930 zrtelqelz 41953 |
Copyright terms: Public domain | W3C validator |