![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qden1elz | Structured version Visualization version GIF version |
Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
qden1elz | ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qeqnumdivden 16793 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
3 | oveq2 7456 | . . . . 5 ⊢ ((denom‘𝐴) = 1 → ((numer‘𝐴) / (denom‘𝐴)) = ((numer‘𝐴) / 1)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → ((numer‘𝐴) / (denom‘𝐴)) = ((numer‘𝐴) / 1)) |
5 | qnumcl 16787 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → (numer‘𝐴) ∈ ℤ) |
7 | 6 | zcnd 12748 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → (numer‘𝐴) ∈ ℂ) |
8 | 7 | div1d 12062 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → ((numer‘𝐴) / 1) = (numer‘𝐴)) |
9 | 2, 4, 8 | 3eqtrd 2784 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 = (numer‘𝐴)) |
10 | 9, 6 | eqeltrd 2844 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 ∈ ℤ) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
12 | 11 | zcnd 12748 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
13 | 12 | div1d 12062 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (𝐴 / 1) = 𝐴) |
14 | 13 | fveq2d 6924 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘(𝐴 / 1)) = (denom‘𝐴)) |
15 | 1nn 12304 | . . . . 5 ⊢ 1 ∈ ℕ | |
16 | divdenle 16796 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (denom‘(𝐴 / 1)) ≤ 1) | |
17 | 11, 15, 16 | sylancl 585 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘(𝐴 / 1)) ≤ 1) |
18 | 14, 17 | eqbrtrrd 5190 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) ≤ 1) |
19 | qdencl 16788 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) ∈ ℕ) |
21 | nnle1eq1 12323 | . . . 4 ⊢ ((denom‘𝐴) ∈ ℕ → ((denom‘𝐴) ≤ 1 ↔ (denom‘𝐴) = 1)) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → ((denom‘𝐴) ≤ 1 ↔ (denom‘𝐴) = 1)) |
23 | 18, 22 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) = 1) |
24 | 10, 23 | impbida 800 | 1 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 ≤ cle 11325 / cdiv 11947 ℕcn 12293 ℤcz 12639 ℚcq 13013 numercnumer 16780 denomcdenom 16781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-numer 16782 df-denom 16783 |
This theorem is referenced by: zsqrtelqelz 16805 zrtelqelz 26819 oexpreposd 42309 |
Copyright terms: Public domain | W3C validator |