| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qden1elz | Structured version Visualization version GIF version | ||
| Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| qden1elz | ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qeqnumdivden 16763 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
| 3 | oveq2 7411 | . . . . 5 ⊢ ((denom‘𝐴) = 1 → ((numer‘𝐴) / (denom‘𝐴)) = ((numer‘𝐴) / 1)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → ((numer‘𝐴) / (denom‘𝐴)) = ((numer‘𝐴) / 1)) |
| 5 | qnumcl 16757 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → (numer‘𝐴) ∈ ℤ) |
| 7 | 6 | zcnd 12696 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → (numer‘𝐴) ∈ ℂ) |
| 8 | 7 | div1d 12007 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → ((numer‘𝐴) / 1) = (numer‘𝐴)) |
| 9 | 2, 4, 8 | 3eqtrd 2774 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 = (numer‘𝐴)) |
| 10 | 9, 6 | eqeltrd 2834 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 ∈ ℤ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 12 | 11 | zcnd 12696 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 13 | 12 | div1d 12007 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (𝐴 / 1) = 𝐴) |
| 14 | 13 | fveq2d 6879 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘(𝐴 / 1)) = (denom‘𝐴)) |
| 15 | 1nn 12249 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 16 | divdenle 16766 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (denom‘(𝐴 / 1)) ≤ 1) | |
| 17 | 11, 15, 16 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘(𝐴 / 1)) ≤ 1) |
| 18 | 14, 17 | eqbrtrrd 5143 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) ≤ 1) |
| 19 | qdencl 16758 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) ∈ ℕ) |
| 21 | nnle1eq1 12268 | . . . 4 ⊢ ((denom‘𝐴) ∈ ℕ → ((denom‘𝐴) ≤ 1 ↔ (denom‘𝐴) = 1)) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → ((denom‘𝐴) ≤ 1 ↔ (denom‘𝐴) = 1)) |
| 23 | 18, 22 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) = 1) |
| 24 | 10, 23 | impbida 800 | 1 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 1c1 11128 ≤ cle 11268 / cdiv 11892 ℕcn 12238 ℤcz 12586 ℚcq 12962 numercnumer 16750 denomcdenom 16751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-gcd 16512 df-numer 16752 df-denom 16753 |
| This theorem is referenced by: zsqrtelqelz 16775 zrtelqelz 26718 oexpreposd 42318 |
| Copyright terms: Public domain | W3C validator |