| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qden1elz | Structured version Visualization version GIF version | ||
| Description: A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| qden1elz | ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qeqnumdivden 16723 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
| 3 | oveq2 7398 | . . . . 5 ⊢ ((denom‘𝐴) = 1 → ((numer‘𝐴) / (denom‘𝐴)) = ((numer‘𝐴) / 1)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → ((numer‘𝐴) / (denom‘𝐴)) = ((numer‘𝐴) / 1)) |
| 5 | qnumcl 16717 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → (numer‘𝐴) ∈ ℤ) |
| 7 | 6 | zcnd 12646 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → (numer‘𝐴) ∈ ℂ) |
| 8 | 7 | div1d 11957 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → ((numer‘𝐴) / 1) = (numer‘𝐴)) |
| 9 | 2, 4, 8 | 3eqtrd 2769 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 = (numer‘𝐴)) |
| 10 | 9, 6 | eqeltrd 2829 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ (denom‘𝐴) = 1) → 𝐴 ∈ ℤ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 12 | 11 | zcnd 12646 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 13 | 12 | div1d 11957 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (𝐴 / 1) = 𝐴) |
| 14 | 13 | fveq2d 6865 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘(𝐴 / 1)) = (denom‘𝐴)) |
| 15 | 1nn 12204 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 16 | divdenle 16726 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (denom‘(𝐴 / 1)) ≤ 1) | |
| 17 | 11, 15, 16 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘(𝐴 / 1)) ≤ 1) |
| 18 | 14, 17 | eqbrtrrd 5134 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) ≤ 1) |
| 19 | qdencl 16718 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) ∈ ℕ) |
| 21 | nnle1eq1 12223 | . . . 4 ⊢ ((denom‘𝐴) ∈ ℕ → ((denom‘𝐴) ≤ 1 ↔ (denom‘𝐴) = 1)) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → ((denom‘𝐴) ≤ 1 ↔ (denom‘𝐴) = 1)) |
| 23 | 18, 22 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℤ) → (denom‘𝐴) = 1) |
| 24 | 10, 23 | impbida 800 | 1 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 ≤ cle 11216 / cdiv 11842 ℕcn 12193 ℤcz 12536 ℚcq 12914 numercnumer 16710 denomcdenom 16711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-numer 16712 df-denom 16713 |
| This theorem is referenced by: zsqrtelqelz 16735 zrtelqelz 26675 oexpreposd 42317 |
| Copyright terms: Public domain | W3C validator |