MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat3 Structured version   Visualization version   GIF version

Theorem ragflat3 26184
Description: Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat3.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat3.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
ragflat3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐵))

Proof of Theorem ragflat3
StepHypRef Expression
1 israg.p . . . 4 𝑃 = (Base‘𝐺)
2 israg.d . . . 4 = (dist‘𝐺)
3 israg.i . . . 4 𝐼 = (Itv‘𝐺)
4 israg.l . . . 4 𝐿 = (LineG‘𝐺)
5 israg.s . . . 4 𝑆 = (pInvG‘𝐺)
6 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 473 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
8 israg.c . . . . 5 (𝜑𝐶𝑃)
98adantr 473 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐶𝑃)
10 israg.b . . . . 5 (𝜑𝐵𝑃)
1110adantr 473 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝑃)
12 israg.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 473 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝑃)
14 ragflat3.1 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1514adantr 473 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
16 simpr 477 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
1716neqned 2968 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
18 ragflat3.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1918adantr 473 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
201, 4, 3, 7, 13, 11, 9, 19colrot1 26037 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
211, 2, 3, 4, 5, 7, 13, 11, 9, 9, 15, 17, 20ragcol 26177 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ⟨“𝐶𝐵𝐶”⟩ ∈ (∟G‘𝐺))
221, 2, 3, 4, 5, 7, 9, 11, 13, 21ragtriva 26183 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐶 = 𝐵)
2322ex 405 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶 = 𝐵))
2423orrd 849 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 833   = wceq 1507  wcel 2048  cfv 6182  (class class class)co 6970  ⟨“cs3 14056  Basecbs 16329  distcds 16420  TarskiGcstrkg 25908  Itvcitv 25914  LineGclng 25915  pInvGcmir 26130  ∟Gcrag 26171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-dju 9116  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-hash 13499  df-word 13663  df-concat 13724  df-s1 13749  df-s2 14062  df-s3 14063  df-trkgc 25926  df-trkgb 25927  df-trkgcb 25928  df-trkg 25931  df-cgrg 25989  df-mir 26131  df-rag 26172
This theorem is referenced by:  ragncol  26187  mideulem2  26212  opphllem  26213
  Copyright terms: Public domain W3C validator