| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ragflat3 | Structured version Visualization version GIF version | ||
| Description: Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
| Ref | Expression |
|---|---|
| israg.p | ⊢ 𝑃 = (Base‘𝐺) |
| israg.d | ⊢ − = (dist‘𝐺) |
| israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
| israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| ragflat3.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| ragflat3.2 | ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| ragflat3 | ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | israg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | israg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | israg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | israg.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | israg.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | israg.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
| 8 | israg.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐶 ∈ 𝑃) |
| 10 | israg.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
| 12 | israg.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
| 14 | ragflat3.1 | . . . . . 6 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 17 | 16 | neqned 2936 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
| 18 | ragflat3.2 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 20 | 1, 4, 3, 7, 13, 11, 9, 19 | colrot1 28538 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
| 21 | 1, 2, 3, 4, 5, 7, 13, 11, 9, 9, 15, 17, 20 | ragcol 28678 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 〈“𝐶𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 22 | 1, 2, 3, 4, 5, 7, 9, 11, 13, 21 | ragtriva 28684 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐶 = 𝐵) |
| 23 | 22 | ex 412 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐶 = 𝐵)) |
| 24 | 23 | orrd 863 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 〈“cs3 14751 Basecbs 17122 distcds 17172 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 pInvGcmir 28631 ∟Gcrag 28672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 df-mir 28632 df-rag 28673 |
| This theorem is referenced by: ragncol 28688 mideulem2 28713 opphllem 28714 |
| Copyright terms: Public domain | W3C validator |