MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat3 Structured version   Visualization version   GIF version

Theorem ragflat3 28685
Description: Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat3.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat3.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
ragflat3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐵))

Proof of Theorem ragflat3
StepHypRef Expression
1 israg.p . . . 4 𝑃 = (Base‘𝐺)
2 israg.d . . . 4 = (dist‘𝐺)
3 israg.i . . . 4 𝐼 = (Itv‘𝐺)
4 israg.l . . . 4 𝐿 = (LineG‘𝐺)
5 israg.s . . . 4 𝑆 = (pInvG‘𝐺)
6 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
8 israg.c . . . . 5 (𝜑𝐶𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐶𝑃)
10 israg.b . . . . 5 (𝜑𝐵𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝑃)
12 israg.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝑃)
14 ragflat3.1 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1514adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
16 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
1716neqned 2936 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
18 ragflat3.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1918adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
201, 4, 3, 7, 13, 11, 9, 19colrot1 28538 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
211, 2, 3, 4, 5, 7, 13, 11, 9, 9, 15, 17, 20ragcol 28678 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ⟨“𝐶𝐵𝐶”⟩ ∈ (∟G‘𝐺))
221, 2, 3, 4, 5, 7, 9, 11, 13, 21ragtriva 28684 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐶 = 𝐵)
2322ex 412 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶 = 𝐵))
2423orrd 863 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  ⟨“cs3 14751  Basecbs 17122  distcds 17172  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631  ∟Gcrag 28672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-mir 28632  df-rag 28673
This theorem is referenced by:  ragncol  28688  mideulem2  28713  opphllem  28714
  Copyright terms: Public domain W3C validator