Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssccatid Structured version   Visualization version   GIF version

Theorem ssccatid 49054
Description: A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49586). (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
ssccatid.h 𝐻 = (Homf𝐶)
ssccatid.d 𝐷 = (𝐶cat 𝐽)
ssccatid.x · = (comp‘𝐶)
ssccatid.j (𝜑𝐽cat 𝐻)
ssccatid.f (𝜑𝐽 Fn (𝑆 × 𝑆))
ssccatid.c (𝜑𝐶 ∈ Cat)
ssccatid.i ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
ssccatid.l ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
ssccatid.r ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
ssccatid.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
Assertion
Ref Expression
ssccatid (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Distinct variable groups:   1 ,𝑎,𝑏,𝑚,𝑥   1 ,𝑓,𝑔,𝑧,𝑥   · ,𝑎,𝑏,𝑚,𝑥,𝑦   · ,𝑓,𝑔,𝑧,𝑦   𝐷,𝑔,𝑦,𝑧   𝐽,𝑎,𝑏,𝑚,𝑥,𝑦   𝑓,𝐽,𝑔,𝑧   𝑆,𝑎,𝑏,𝑚,𝑥,𝑦   𝑆,𝑓,𝑔,𝑧   𝜑,𝑎,𝑏,𝑚,𝑥,𝑦   𝑧,𝑏,𝑚,𝜑   𝑓,𝑚,𝜑,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)   𝐷(𝑥,𝑓,𝑚,𝑎,𝑏)   1 (𝑦)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)

Proof of Theorem ssccatid
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssccatid.d . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 ssccatid.c . . 3 (𝜑𝐶 ∈ Cat)
4 ssccatid.f . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
5 ssccatid.h . . . . . 6 𝐻 = (Homf𝐶)
65, 2homffn 17634 . . . . 5 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
76a1i 11 . . . 4 (𝜑𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
8 ssccatid.j . . . 4 (𝜑𝐽cat 𝐻)
94, 7, 8ssc1 17763 . . 3 (𝜑𝑆 ⊆ (Base‘𝐶))
101, 2, 3, 4, 9rescbas 17771 . 2 (𝜑𝑆 = (Base‘𝐷))
111, 2, 3, 4, 9reschom 17772 . 2 (𝜑𝐽 = (Hom ‘𝐷))
12 ssccatid.x . . 3 · = (comp‘𝐶)
131, 2, 3, 4, 9, 12rescco 17774 . 2 (𝜑· = (comp‘𝐷))
141ovexi 7403 . . 3 𝐷 ∈ V
1514a1i 11 . 2 (𝜑𝐷 ∈ V)
16 biid 261 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))) ↔ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))))
17 ssccatid.i . 2 ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
18 oveq2 7377 . . . 4 (𝑚 = 𝑓 → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓))
19 id 22 . . . 4 (𝑚 = 𝑓𝑚 = 𝑓)
2018, 19eqeq12d 2745 . . 3 (𝑚 = 𝑓 → (( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓))
21 oveq1 7376 . . . . 5 (𝑎 = 𝑥 → (𝑎𝐽𝑏) = (𝑥𝐽𝑏))
22 opeq1 4833 . . . . . . . 8 (𝑎 = 𝑥 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑏⟩)
2322oveq1d 7384 . . . . . . 7 (𝑎 = 𝑥 → (⟨𝑎, 𝑏· 𝑏) = (⟨𝑥, 𝑏· 𝑏))
2423oveqd 7386 . . . . . 6 (𝑎 = 𝑥 → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚))
2524eqeq1d 2731 . . . . 5 (𝑎 = 𝑥 → (( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
2621, 25raleqbidv 3316 . . . 4 (𝑎 = 𝑥 → (∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
27 oveq2 7377 . . . . 5 (𝑏 = 𝑦 → (𝑥𝐽𝑏) = (𝑥𝐽𝑦))
28 opeq2 4834 . . . . . . . 8 (𝑏 = 𝑦 → ⟨𝑥, 𝑏⟩ = ⟨𝑥, 𝑦⟩)
29 id 22 . . . . . . . 8 (𝑏 = 𝑦𝑏 = 𝑦)
3028, 29oveq12d 7387 . . . . . . 7 (𝑏 = 𝑦 → (⟨𝑥, 𝑏· 𝑏) = (⟨𝑥, 𝑦· 𝑦))
3130oveqd 7386 . . . . . 6 (𝑏 = 𝑦 → ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚))
3231eqeq1d 2731 . . . . 5 (𝑏 = 𝑦 → (( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
3327, 32raleqbidv 3316 . . . 4 (𝑏 = 𝑦 → (∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
34 ssccatid.l . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3534ralrimivvva 3181 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3635adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
37 simpr1l 1231 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥𝑆)
38 simpr1r 1232 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦𝑆)
3926, 33, 36, 37, 38rspc2dv 3600 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚)
40 simpr31 1264 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐽𝑦))
4120, 39, 40rspcdva 3586 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
42 oveq1 7376 . . . 4 (𝑚 = 𝑔 → (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ))
43 id 22 . . . 4 (𝑚 = 𝑔𝑚 = 𝑔)
4442, 43eqeq12d 2745 . . 3 (𝑚 = 𝑔 → ((𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚 ↔ (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔))
45 oveq1 7376 . . . . 5 (𝑎 = 𝑦 → (𝑎𝐽𝑏) = (𝑦𝐽𝑏))
46 id 22 . . . . . . . . 9 (𝑎 = 𝑦𝑎 = 𝑦)
4746, 46opeq12d 4841 . . . . . . . 8 (𝑎 = 𝑦 → ⟨𝑎, 𝑎⟩ = ⟨𝑦, 𝑦⟩)
4847oveq1d 7384 . . . . . . 7 (𝑎 = 𝑦 → (⟨𝑎, 𝑎· 𝑏) = (⟨𝑦, 𝑦· 𝑏))
4948oveqd 7386 . . . . . 6 (𝑎 = 𝑦 → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ))
5049eqeq1d 2731 . . . . 5 (𝑎 = 𝑦 → ((𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
5145, 50raleqbidv 3316 . . . 4 (𝑎 = 𝑦 → (∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
52 oveq2 7377 . . . . 5 (𝑏 = 𝑧 → (𝑦𝐽𝑏) = (𝑦𝐽𝑧))
53 oveq2 7377 . . . . . . 7 (𝑏 = 𝑧 → (⟨𝑦, 𝑦· 𝑏) = (⟨𝑦, 𝑦· 𝑧))
5453oveqd 7386 . . . . . 6 (𝑏 = 𝑧 → (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ))
5554eqeq1d 2731 . . . . 5 (𝑏 = 𝑧 → ((𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
5652, 55raleqbidv 3316 . . . 4 (𝑏 = 𝑧 → (∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
57 ssccatid.r . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5857ralrimivvva 3181 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5958adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
60 simpr2l 1233 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧𝑆)
6151, 56, 59, 38, 60rspc2dv 3600 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚)
62 simpr32 1265 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐽𝑧))
6344, 61, 62rspcdva 3586 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
64 simpl 482 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝜑)
65 ssccatid.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
6664, 37, 38, 60, 40, 62, 65syl132anc 1390 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
67 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
683adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐶 ∈ Cat)
699adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑆 ⊆ (Base‘𝐶))
7069, 37sseldd 3944 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥 ∈ (Base‘𝐶))
7169, 38sseldd 3944 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦 ∈ (Base‘𝐶))
7269, 60sseldd 3944 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧 ∈ (Base‘𝐶))
734adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽 Fn (𝑆 × 𝑆))
748adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽cat 𝐻)
7573, 74, 37, 38ssc2 17764 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐽𝑦) ⊆ (𝑥𝐻𝑦))
7675, 40sseldd 3944 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦))
775, 2, 67, 70, 71homfval 17633 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
7876, 77eleqtrd 2830 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7973, 74, 38, 60ssc2 17764 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐽𝑧) ⊆ (𝑦𝐻𝑧))
8079, 62sseldd 3944 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧))
815, 2, 67, 71, 72homfval 17633 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
8280, 81eleqtrd 2830 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
83 simpr2r 1234 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤𝑆)
8469, 83sseldd 3944 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤 ∈ (Base‘𝐶))
8573, 74, 60, 83ssc2 17764 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐽𝑤) ⊆ (𝑧𝐻𝑤))
86 simpr33 1266 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐽𝑤))
8785, 86sseldd 3944 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤))
885, 2, 67, 72, 84homfval 17633 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐶)𝑤))
8987, 88eleqtrd 2830 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
902, 67, 12, 68, 70, 71, 72, 78, 82, 84, 89catass 17627 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
9110, 11, 13, 15, 16, 17, 41, 63, 66, 90iscatd2 17622 1 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  Idccid 17606  Homf chomf 17607  cat cssc 17749  cat cresc 17750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-homf 17611  df-ssc 17752  df-resc 17753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator