| Step | Hyp | Ref
| Expression |
| 1 | | ssccatid.d |
. . 3
⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| 2 | | eqid 2734 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | | ssccatid.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 4 | | ssccatid.f |
. . 3
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 5 | | ssccatid.h |
. . . . . 6
⊢ 𝐻 = (Homf
‘𝐶) |
| 6 | 5, 2 | homffn 17692 |
. . . . 5
⊢ 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | | ssccatid.j |
. . . 4
⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
| 9 | 4, 7, 8 | ssc1 17821 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
| 10 | 1, 2, 3, 4, 9 | rescbas 17829 |
. 2
⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| 11 | 1, 2, 3, 4, 9 | reschom 17830 |
. 2
⊢ (𝜑 → 𝐽 = (Hom ‘𝐷)) |
| 12 | | ssccatid.x |
. . 3
⊢ · =
(comp‘𝐶) |
| 13 | 1, 2, 3, 4, 9, 12 | rescco 17832 |
. 2
⊢ (𝜑 → · = (comp‘𝐷)) |
| 14 | 1 | ovexi 7434 |
. . 3
⊢ 𝐷 ∈ V |
| 15 | 14 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 ∈ V) |
| 16 | | biid 261 |
. 2
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) |
| 17 | | ssccatid.i |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ (𝑦𝐽𝑦)) |
| 18 | | oveq2 7408 |
. . . 4
⊢ (𝑚 = 𝑓 → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑚) = ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓)) |
| 19 | | id 22 |
. . . 4
⊢ (𝑚 = 𝑓 → 𝑚 = 𝑓) |
| 20 | 18, 19 | eqeq12d 2750 |
. . 3
⊢ (𝑚 = 𝑓 → (( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑚) = 𝑚 ↔ ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓)) |
| 21 | | oveq1 7407 |
. . . . 5
⊢ (𝑎 = 𝑥 → (𝑎𝐽𝑏) = (𝑥𝐽𝑏)) |
| 22 | | opeq1 4847 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → 〈𝑎, 𝑏〉 = 〈𝑥, 𝑏〉) |
| 23 | 22 | oveq1d 7415 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → (〈𝑎, 𝑏〉 · 𝑏) = (〈𝑥, 𝑏〉 · 𝑏)) |
| 24 | 23 | oveqd 7417 |
. . . . . 6
⊢ (𝑎 = 𝑥 → ( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = ( 1 (〈𝑥, 𝑏〉 · 𝑏)𝑚)) |
| 25 | 24 | eqeq1d 2736 |
. . . . 5
⊢ (𝑎 = 𝑥 → (( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚 ↔ ( 1 (〈𝑥, 𝑏〉 · 𝑏)𝑚) = 𝑚)) |
| 26 | 21, 25 | raleqbidv 3323 |
. . . 4
⊢ (𝑎 = 𝑥 → (∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (〈𝑥, 𝑏〉 · 𝑏)𝑚) = 𝑚)) |
| 27 | | oveq2 7408 |
. . . . 5
⊢ (𝑏 = 𝑦 → (𝑥𝐽𝑏) = (𝑥𝐽𝑦)) |
| 28 | | opeq2 4848 |
. . . . . . . 8
⊢ (𝑏 = 𝑦 → 〈𝑥, 𝑏〉 = 〈𝑥, 𝑦〉) |
| 29 | | id 22 |
. . . . . . . 8
⊢ (𝑏 = 𝑦 → 𝑏 = 𝑦) |
| 30 | 28, 29 | oveq12d 7418 |
. . . . . . 7
⊢ (𝑏 = 𝑦 → (〈𝑥, 𝑏〉 · 𝑏) = (〈𝑥, 𝑦〉 · 𝑦)) |
| 31 | 30 | oveqd 7417 |
. . . . . 6
⊢ (𝑏 = 𝑦 → ( 1 (〈𝑥, 𝑏〉 · 𝑏)𝑚) = ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑚)) |
| 32 | 31 | eqeq1d 2736 |
. . . . 5
⊢ (𝑏 = 𝑦 → (( 1 (〈𝑥, 𝑏〉 · 𝑏)𝑚) = 𝑚 ↔ ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑚) = 𝑚)) |
| 33 | 27, 32 | raleqbidv 3323 |
. . . 4
⊢ (𝑏 = 𝑦 → (∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (〈𝑥, 𝑏〉 · 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑚) = 𝑚)) |
| 34 | | ssccatid.l |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚) |
| 35 | 34 | ralrimivvva 3188 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 ∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚) |
| 36 | 35 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 ∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (〈𝑎, 𝑏〉 · 𝑏)𝑚) = 𝑚) |
| 37 | | simpr1l 1230 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥 ∈ 𝑆) |
| 38 | | simpr1r 1231 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦 ∈ 𝑆) |
| 39 | 26, 33, 36, 37, 38 | rspc2dv 3614 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑚) = 𝑚) |
| 40 | | simpr31 1263 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐽𝑦)) |
| 41 | 20, 39, 40 | rspcdva 3600 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓) |
| 42 | | oveq1 7407 |
. . . 4
⊢ (𝑚 = 𝑔 → (𝑚(〈𝑦, 𝑦〉 · 𝑧) 1 ) = (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 )) |
| 43 | | id 22 |
. . . 4
⊢ (𝑚 = 𝑔 → 𝑚 = 𝑔) |
| 44 | 42, 43 | eqeq12d 2750 |
. . 3
⊢ (𝑚 = 𝑔 → ((𝑚(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑚 ↔ (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔)) |
| 45 | | oveq1 7407 |
. . . . 5
⊢ (𝑎 = 𝑦 → (𝑎𝐽𝑏) = (𝑦𝐽𝑏)) |
| 46 | | id 22 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → 𝑎 = 𝑦) |
| 47 | 46, 46 | opeq12d 4855 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → 〈𝑎, 𝑎〉 = 〈𝑦, 𝑦〉) |
| 48 | 47 | oveq1d 7415 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (〈𝑎, 𝑎〉 · 𝑏) = (〈𝑦, 𝑦〉 · 𝑏)) |
| 49 | 48 | oveqd 7417 |
. . . . . 6
⊢ (𝑎 = 𝑦 → (𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = (𝑚(〈𝑦, 𝑦〉 · 𝑏) 1 )) |
| 50 | 49 | eqeq1d 2736 |
. . . . 5
⊢ (𝑎 = 𝑦 → ((𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚 ↔ (𝑚(〈𝑦, 𝑦〉 · 𝑏) 1 ) = 𝑚)) |
| 51 | 45, 50 | raleqbidv 3323 |
. . . 4
⊢ (𝑎 = 𝑦 → (∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(〈𝑦, 𝑦〉 · 𝑏) 1 ) = 𝑚)) |
| 52 | | oveq2 7408 |
. . . . 5
⊢ (𝑏 = 𝑧 → (𝑦𝐽𝑏) = (𝑦𝐽𝑧)) |
| 53 | | oveq2 7408 |
. . . . . . 7
⊢ (𝑏 = 𝑧 → (〈𝑦, 𝑦〉 · 𝑏) = (〈𝑦, 𝑦〉 · 𝑧)) |
| 54 | 53 | oveqd 7417 |
. . . . . 6
⊢ (𝑏 = 𝑧 → (𝑚(〈𝑦, 𝑦〉 · 𝑏) 1 ) = (𝑚(〈𝑦, 𝑦〉 · 𝑧) 1 )) |
| 55 | 54 | eqeq1d 2736 |
. . . . 5
⊢ (𝑏 = 𝑧 → ((𝑚(〈𝑦, 𝑦〉 · 𝑏) 1 ) = 𝑚 ↔ (𝑚(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑚)) |
| 56 | 52, 55 | raleqbidv 3323 |
. . . 4
⊢ (𝑏 = 𝑧 → (∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(〈𝑦, 𝑦〉 · 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑚)) |
| 57 | | ssccatid.r |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚) |
| 58 | 57 | ralrimivvva 3188 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 ∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚) |
| 59 | 58 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 ∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(〈𝑎, 𝑎〉 · 𝑏) 1 ) = 𝑚) |
| 60 | | simpr2l 1232 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧 ∈ 𝑆) |
| 61 | 51, 56, 59, 38, 60 | rspc2dv 3614 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑚) |
| 62 | | simpr32 1264 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐽𝑧)) |
| 63 | 44, 61, 62 | rspcdva 3600 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔) |
| 64 | | simpl 482 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝜑) |
| 65 | | ssccatid.1 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
| 66 | 64, 37, 38, 60, 40, 62, 65 | syl132anc 1389 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) |
| 67 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 68 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐶 ∈ Cat) |
| 69 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑆 ⊆ (Base‘𝐶)) |
| 70 | 69, 37 | sseldd 3957 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥 ∈ (Base‘𝐶)) |
| 71 | 69, 38 | sseldd 3957 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦 ∈ (Base‘𝐶)) |
| 72 | 69, 60 | sseldd 3957 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧 ∈ (Base‘𝐶)) |
| 73 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽 Fn (𝑆 × 𝑆)) |
| 74 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽 ⊆cat 𝐻) |
| 75 | 73, 74, 37, 38 | ssc2 17822 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐽𝑦) ⊆ (𝑥𝐻𝑦)) |
| 76 | 75, 40 | sseldd 3957 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 77 | 5, 2, 67, 70, 71 | homfval 17691 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 78 | 76, 77 | eleqtrd 2835 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 79 | 73, 74, 38, 60 | ssc2 17822 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐽𝑧) ⊆ (𝑦𝐻𝑧)) |
| 80 | 79, 62 | sseldd 3957 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
| 81 | 5, 2, 67, 71, 72 | homfval 17691 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧)) |
| 82 | 80, 81 | eleqtrd 2835 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 83 | | simpr2r 1233 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤 ∈ 𝑆) |
| 84 | 69, 83 | sseldd 3957 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤 ∈ (Base‘𝐶)) |
| 85 | 73, 74, 60, 83 | ssc2 17822 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐽𝑤) ⊆ (𝑧𝐻𝑤)) |
| 86 | | simpr33 1265 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐽𝑤)) |
| 87 | 85, 86 | sseldd 3957 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤)) |
| 88 | 5, 2, 67, 72, 84 | homfval 17691 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐶)𝑤)) |
| 89 | 87, 88 | eleqtrd 2835 |
. . 3
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) |
| 90 | 2, 67, 12, 68, 70, 71, 72, 78, 82, 84, 89 | catass 17685 |
. 2
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) |
| 91 | 10, 11, 13, 15, 16, 17, 41, 63, 66, 90 | iscatd2 17680 |
1
⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦 ∈ 𝑆 ↦ 1 ))) |