Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssccatid Structured version   Visualization version   GIF version

Theorem ssccatid 49051
Description: A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49583). (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
ssccatid.h 𝐻 = (Homf𝐶)
ssccatid.d 𝐷 = (𝐶cat 𝐽)
ssccatid.x · = (comp‘𝐶)
ssccatid.j (𝜑𝐽cat 𝐻)
ssccatid.f (𝜑𝐽 Fn (𝑆 × 𝑆))
ssccatid.c (𝜑𝐶 ∈ Cat)
ssccatid.i ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
ssccatid.l ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
ssccatid.r ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
ssccatid.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
Assertion
Ref Expression
ssccatid (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Distinct variable groups:   1 ,𝑎,𝑏,𝑚,𝑥   1 ,𝑓,𝑔,𝑧,𝑥   · ,𝑎,𝑏,𝑚,𝑥,𝑦   · ,𝑓,𝑔,𝑧,𝑦   𝐷,𝑔,𝑦,𝑧   𝐽,𝑎,𝑏,𝑚,𝑥,𝑦   𝑓,𝐽,𝑔,𝑧   𝑆,𝑎,𝑏,𝑚,𝑥,𝑦   𝑆,𝑓,𝑔,𝑧   𝜑,𝑎,𝑏,𝑚,𝑥,𝑦   𝑧,𝑏,𝑚,𝜑   𝑓,𝑚,𝜑,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)   𝐷(𝑥,𝑓,𝑚,𝑎,𝑏)   1 (𝑦)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)

Proof of Theorem ssccatid
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssccatid.d . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 ssccatid.c . . 3 (𝜑𝐶 ∈ Cat)
4 ssccatid.f . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
5 ssccatid.h . . . . . 6 𝐻 = (Homf𝐶)
65, 2homffn 17660 . . . . 5 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
76a1i 11 . . . 4 (𝜑𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
8 ssccatid.j . . . 4 (𝜑𝐽cat 𝐻)
94, 7, 8ssc1 17789 . . 3 (𝜑𝑆 ⊆ (Base‘𝐶))
101, 2, 3, 4, 9rescbas 17797 . 2 (𝜑𝑆 = (Base‘𝐷))
111, 2, 3, 4, 9reschom 17798 . 2 (𝜑𝐽 = (Hom ‘𝐷))
12 ssccatid.x . . 3 · = (comp‘𝐶)
131, 2, 3, 4, 9, 12rescco 17800 . 2 (𝜑· = (comp‘𝐷))
141ovexi 7423 . . 3 𝐷 ∈ V
1514a1i 11 . 2 (𝜑𝐷 ∈ V)
16 biid 261 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))) ↔ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))))
17 ssccatid.i . 2 ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
18 oveq2 7397 . . . 4 (𝑚 = 𝑓 → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓))
19 id 22 . . . 4 (𝑚 = 𝑓𝑚 = 𝑓)
2018, 19eqeq12d 2746 . . 3 (𝑚 = 𝑓 → (( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓))
21 oveq1 7396 . . . . 5 (𝑎 = 𝑥 → (𝑎𝐽𝑏) = (𝑥𝐽𝑏))
22 opeq1 4839 . . . . . . . 8 (𝑎 = 𝑥 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑏⟩)
2322oveq1d 7404 . . . . . . 7 (𝑎 = 𝑥 → (⟨𝑎, 𝑏· 𝑏) = (⟨𝑥, 𝑏· 𝑏))
2423oveqd 7406 . . . . . 6 (𝑎 = 𝑥 → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚))
2524eqeq1d 2732 . . . . 5 (𝑎 = 𝑥 → (( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
2621, 25raleqbidv 3321 . . . 4 (𝑎 = 𝑥 → (∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
27 oveq2 7397 . . . . 5 (𝑏 = 𝑦 → (𝑥𝐽𝑏) = (𝑥𝐽𝑦))
28 opeq2 4840 . . . . . . . 8 (𝑏 = 𝑦 → ⟨𝑥, 𝑏⟩ = ⟨𝑥, 𝑦⟩)
29 id 22 . . . . . . . 8 (𝑏 = 𝑦𝑏 = 𝑦)
3028, 29oveq12d 7407 . . . . . . 7 (𝑏 = 𝑦 → (⟨𝑥, 𝑏· 𝑏) = (⟨𝑥, 𝑦· 𝑦))
3130oveqd 7406 . . . . . 6 (𝑏 = 𝑦 → ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚))
3231eqeq1d 2732 . . . . 5 (𝑏 = 𝑦 → (( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
3327, 32raleqbidv 3321 . . . 4 (𝑏 = 𝑦 → (∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
34 ssccatid.l . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3534ralrimivvva 3184 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3635adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
37 simpr1l 1231 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥𝑆)
38 simpr1r 1232 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦𝑆)
3926, 33, 36, 37, 38rspc2dv 3606 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚)
40 simpr31 1264 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐽𝑦))
4120, 39, 40rspcdva 3592 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
42 oveq1 7396 . . . 4 (𝑚 = 𝑔 → (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ))
43 id 22 . . . 4 (𝑚 = 𝑔𝑚 = 𝑔)
4442, 43eqeq12d 2746 . . 3 (𝑚 = 𝑔 → ((𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚 ↔ (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔))
45 oveq1 7396 . . . . 5 (𝑎 = 𝑦 → (𝑎𝐽𝑏) = (𝑦𝐽𝑏))
46 id 22 . . . . . . . . 9 (𝑎 = 𝑦𝑎 = 𝑦)
4746, 46opeq12d 4847 . . . . . . . 8 (𝑎 = 𝑦 → ⟨𝑎, 𝑎⟩ = ⟨𝑦, 𝑦⟩)
4847oveq1d 7404 . . . . . . 7 (𝑎 = 𝑦 → (⟨𝑎, 𝑎· 𝑏) = (⟨𝑦, 𝑦· 𝑏))
4948oveqd 7406 . . . . . 6 (𝑎 = 𝑦 → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ))
5049eqeq1d 2732 . . . . 5 (𝑎 = 𝑦 → ((𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
5145, 50raleqbidv 3321 . . . 4 (𝑎 = 𝑦 → (∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
52 oveq2 7397 . . . . 5 (𝑏 = 𝑧 → (𝑦𝐽𝑏) = (𝑦𝐽𝑧))
53 oveq2 7397 . . . . . . 7 (𝑏 = 𝑧 → (⟨𝑦, 𝑦· 𝑏) = (⟨𝑦, 𝑦· 𝑧))
5453oveqd 7406 . . . . . 6 (𝑏 = 𝑧 → (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ))
5554eqeq1d 2732 . . . . 5 (𝑏 = 𝑧 → ((𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
5652, 55raleqbidv 3321 . . . 4 (𝑏 = 𝑧 → (∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
57 ssccatid.r . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5857ralrimivvva 3184 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5958adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
60 simpr2l 1233 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧𝑆)
6151, 56, 59, 38, 60rspc2dv 3606 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚)
62 simpr32 1265 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐽𝑧))
6344, 61, 62rspcdva 3592 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
64 simpl 482 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝜑)
65 ssccatid.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
6664, 37, 38, 60, 40, 62, 65syl132anc 1390 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
67 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
683adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐶 ∈ Cat)
699adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑆 ⊆ (Base‘𝐶))
7069, 37sseldd 3949 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥 ∈ (Base‘𝐶))
7169, 38sseldd 3949 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦 ∈ (Base‘𝐶))
7269, 60sseldd 3949 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧 ∈ (Base‘𝐶))
734adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽 Fn (𝑆 × 𝑆))
748adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽cat 𝐻)
7573, 74, 37, 38ssc2 17790 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐽𝑦) ⊆ (𝑥𝐻𝑦))
7675, 40sseldd 3949 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦))
775, 2, 67, 70, 71homfval 17659 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
7876, 77eleqtrd 2831 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7973, 74, 38, 60ssc2 17790 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐽𝑧) ⊆ (𝑦𝐻𝑧))
8079, 62sseldd 3949 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧))
815, 2, 67, 71, 72homfval 17659 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
8280, 81eleqtrd 2831 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
83 simpr2r 1234 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤𝑆)
8469, 83sseldd 3949 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤 ∈ (Base‘𝐶))
8573, 74, 60, 83ssc2 17790 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐽𝑤) ⊆ (𝑧𝐻𝑤))
86 simpr33 1266 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐽𝑤))
8785, 86sseldd 3949 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤))
885, 2, 67, 72, 84homfval 17659 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐶)𝑤))
8987, 88eleqtrd 2831 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
902, 67, 12, 68, 70, 71, 72, 78, 82, 84, 89catass 17653 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
9110, 11, 13, 15, 16, 17, 41, 63, 66, 90iscatd2 17648 1 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3916  cop 4597   class class class wbr 5109  cmpt 5190   × cxp 5638   Fn wfn 6508  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  Homf chomf 17633  cat cssc 17775  cat cresc 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-homf 17637  df-ssc 17778  df-resc 17779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator