Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssccatid Structured version   Visualization version   GIF version

Theorem ssccatid 48933
Description: A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49342). (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
ssccatid.h 𝐻 = (Homf𝐶)
ssccatid.d 𝐷 = (𝐶cat 𝐽)
ssccatid.x · = (comp‘𝐶)
ssccatid.j (𝜑𝐽cat 𝐻)
ssccatid.f (𝜑𝐽 Fn (𝑆 × 𝑆))
ssccatid.c (𝜑𝐶 ∈ Cat)
ssccatid.i ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
ssccatid.l ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
ssccatid.r ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
ssccatid.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
Assertion
Ref Expression
ssccatid (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Distinct variable groups:   1 ,𝑎,𝑏,𝑚,𝑥   1 ,𝑓,𝑔,𝑧,𝑥   · ,𝑎,𝑏,𝑚,𝑥,𝑦   · ,𝑓,𝑔,𝑧,𝑦   𝐷,𝑔,𝑦,𝑧   𝐽,𝑎,𝑏,𝑚,𝑥,𝑦   𝑓,𝐽,𝑔,𝑧   𝑆,𝑎,𝑏,𝑚,𝑥,𝑦   𝑆,𝑓,𝑔,𝑧   𝜑,𝑎,𝑏,𝑚,𝑥,𝑦   𝑧,𝑏,𝑚,𝜑   𝑓,𝑚,𝜑,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)   𝐷(𝑥,𝑓,𝑚,𝑎,𝑏)   1 (𝑦)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)

Proof of Theorem ssccatid
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssccatid.d . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 ssccatid.c . . 3 (𝜑𝐶 ∈ Cat)
4 ssccatid.f . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
5 ssccatid.h . . . . . 6 𝐻 = (Homf𝐶)
65, 2homffn 17692 . . . . 5 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
76a1i 11 . . . 4 (𝜑𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
8 ssccatid.j . . . 4 (𝜑𝐽cat 𝐻)
94, 7, 8ssc1 17821 . . 3 (𝜑𝑆 ⊆ (Base‘𝐶))
101, 2, 3, 4, 9rescbas 17829 . 2 (𝜑𝑆 = (Base‘𝐷))
111, 2, 3, 4, 9reschom 17830 . 2 (𝜑𝐽 = (Hom ‘𝐷))
12 ssccatid.x . . 3 · = (comp‘𝐶)
131, 2, 3, 4, 9, 12rescco 17832 . 2 (𝜑· = (comp‘𝐷))
141ovexi 7434 . . 3 𝐷 ∈ V
1514a1i 11 . 2 (𝜑𝐷 ∈ V)
16 biid 261 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))) ↔ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))))
17 ssccatid.i . 2 ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
18 oveq2 7408 . . . 4 (𝑚 = 𝑓 → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓))
19 id 22 . . . 4 (𝑚 = 𝑓𝑚 = 𝑓)
2018, 19eqeq12d 2750 . . 3 (𝑚 = 𝑓 → (( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓))
21 oveq1 7407 . . . . 5 (𝑎 = 𝑥 → (𝑎𝐽𝑏) = (𝑥𝐽𝑏))
22 opeq1 4847 . . . . . . . 8 (𝑎 = 𝑥 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑏⟩)
2322oveq1d 7415 . . . . . . 7 (𝑎 = 𝑥 → (⟨𝑎, 𝑏· 𝑏) = (⟨𝑥, 𝑏· 𝑏))
2423oveqd 7417 . . . . . 6 (𝑎 = 𝑥 → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚))
2524eqeq1d 2736 . . . . 5 (𝑎 = 𝑥 → (( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
2621, 25raleqbidv 3323 . . . 4 (𝑎 = 𝑥 → (∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
27 oveq2 7408 . . . . 5 (𝑏 = 𝑦 → (𝑥𝐽𝑏) = (𝑥𝐽𝑦))
28 opeq2 4848 . . . . . . . 8 (𝑏 = 𝑦 → ⟨𝑥, 𝑏⟩ = ⟨𝑥, 𝑦⟩)
29 id 22 . . . . . . . 8 (𝑏 = 𝑦𝑏 = 𝑦)
3028, 29oveq12d 7418 . . . . . . 7 (𝑏 = 𝑦 → (⟨𝑥, 𝑏· 𝑏) = (⟨𝑥, 𝑦· 𝑦))
3130oveqd 7417 . . . . . 6 (𝑏 = 𝑦 → ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚))
3231eqeq1d 2736 . . . . 5 (𝑏 = 𝑦 → (( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
3327, 32raleqbidv 3323 . . . 4 (𝑏 = 𝑦 → (∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
34 ssccatid.l . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3534ralrimivvva 3188 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3635adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
37 simpr1l 1230 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥𝑆)
38 simpr1r 1231 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦𝑆)
3926, 33, 36, 37, 38rspc2dv 3614 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚)
40 simpr31 1263 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐽𝑦))
4120, 39, 40rspcdva 3600 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
42 oveq1 7407 . . . 4 (𝑚 = 𝑔 → (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ))
43 id 22 . . . 4 (𝑚 = 𝑔𝑚 = 𝑔)
4442, 43eqeq12d 2750 . . 3 (𝑚 = 𝑔 → ((𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚 ↔ (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔))
45 oveq1 7407 . . . . 5 (𝑎 = 𝑦 → (𝑎𝐽𝑏) = (𝑦𝐽𝑏))
46 id 22 . . . . . . . . 9 (𝑎 = 𝑦𝑎 = 𝑦)
4746, 46opeq12d 4855 . . . . . . . 8 (𝑎 = 𝑦 → ⟨𝑎, 𝑎⟩ = ⟨𝑦, 𝑦⟩)
4847oveq1d 7415 . . . . . . 7 (𝑎 = 𝑦 → (⟨𝑎, 𝑎· 𝑏) = (⟨𝑦, 𝑦· 𝑏))
4948oveqd 7417 . . . . . 6 (𝑎 = 𝑦 → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ))
5049eqeq1d 2736 . . . . 5 (𝑎 = 𝑦 → ((𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
5145, 50raleqbidv 3323 . . . 4 (𝑎 = 𝑦 → (∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
52 oveq2 7408 . . . . 5 (𝑏 = 𝑧 → (𝑦𝐽𝑏) = (𝑦𝐽𝑧))
53 oveq2 7408 . . . . . . 7 (𝑏 = 𝑧 → (⟨𝑦, 𝑦· 𝑏) = (⟨𝑦, 𝑦· 𝑧))
5453oveqd 7417 . . . . . 6 (𝑏 = 𝑧 → (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ))
5554eqeq1d 2736 . . . . 5 (𝑏 = 𝑧 → ((𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
5652, 55raleqbidv 3323 . . . 4 (𝑏 = 𝑧 → (∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
57 ssccatid.r . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5857ralrimivvva 3188 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5958adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
60 simpr2l 1232 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧𝑆)
6151, 56, 59, 38, 60rspc2dv 3614 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚)
62 simpr32 1264 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐽𝑧))
6344, 61, 62rspcdva 3600 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
64 simpl 482 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝜑)
65 ssccatid.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
6664, 37, 38, 60, 40, 62, 65syl132anc 1389 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
67 eqid 2734 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
683adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐶 ∈ Cat)
699adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑆 ⊆ (Base‘𝐶))
7069, 37sseldd 3957 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥 ∈ (Base‘𝐶))
7169, 38sseldd 3957 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦 ∈ (Base‘𝐶))
7269, 60sseldd 3957 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧 ∈ (Base‘𝐶))
734adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽 Fn (𝑆 × 𝑆))
748adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽cat 𝐻)
7573, 74, 37, 38ssc2 17822 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐽𝑦) ⊆ (𝑥𝐻𝑦))
7675, 40sseldd 3957 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦))
775, 2, 67, 70, 71homfval 17691 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
7876, 77eleqtrd 2835 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7973, 74, 38, 60ssc2 17822 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐽𝑧) ⊆ (𝑦𝐻𝑧))
8079, 62sseldd 3957 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧))
815, 2, 67, 71, 72homfval 17691 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
8280, 81eleqtrd 2835 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
83 simpr2r 1233 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤𝑆)
8469, 83sseldd 3957 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤 ∈ (Base‘𝐶))
8573, 74, 60, 83ssc2 17822 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐽𝑤) ⊆ (𝑧𝐻𝑤))
86 simpr33 1265 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐽𝑤))
8785, 86sseldd 3957 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤))
885, 2, 67, 72, 84homfval 17691 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐶)𝑤))
8987, 88eleqtrd 2835 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
902, 67, 12, 68, 70, 71, 72, 78, 82, 84, 89catass 17685 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
9110, 11, 13, 15, 16, 17, 41, 63, 66, 90iscatd2 17680 1 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  Vcvv 3457  wss 3924  cop 4605   class class class wbr 5117  cmpt 5199   × cxp 5650   Fn wfn 6523  cfv 6528  (class class class)co 7400  Basecbs 17215  Hom chom 17269  compcco 17270  Catccat 17663  Idccid 17664  Homf chomf 17665  cat cssc 17807  cat cresc 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-hom 17282  df-cco 17283  df-cat 17667  df-cid 17668  df-homf 17669  df-ssc 17810  df-resc 17811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator