Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssccatid Structured version   Visualization version   GIF version

Theorem ssccatid 49067
Description: A category 𝐶 restricted by 𝐽 is a category if all of the following are satisfied: a) the base is a subset of base of 𝐶, b) all hom-sets are subsets of hom-sets of 𝐶, c) it has identity morphisms for all objects, d) the composition under 𝐶 is closed in 𝐽. But 𝐽 might not be a subcategory of 𝐶 (see cnelsubc 49599). (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
ssccatid.h 𝐻 = (Homf𝐶)
ssccatid.d 𝐷 = (𝐶cat 𝐽)
ssccatid.x · = (comp‘𝐶)
ssccatid.j (𝜑𝐽cat 𝐻)
ssccatid.f (𝜑𝐽 Fn (𝑆 × 𝑆))
ssccatid.c (𝜑𝐶 ∈ Cat)
ssccatid.i ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
ssccatid.l ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
ssccatid.r ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
ssccatid.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
Assertion
Ref Expression
ssccatid (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Distinct variable groups:   1 ,𝑎,𝑏,𝑚,𝑥   1 ,𝑓,𝑔,𝑧,𝑥   · ,𝑎,𝑏,𝑚,𝑥,𝑦   · ,𝑓,𝑔,𝑧,𝑦   𝐷,𝑔,𝑦,𝑧   𝐽,𝑎,𝑏,𝑚,𝑥,𝑦   𝑓,𝐽,𝑔,𝑧   𝑆,𝑎,𝑏,𝑚,𝑥,𝑦   𝑆,𝑓,𝑔,𝑧   𝜑,𝑎,𝑏,𝑚,𝑥,𝑦   𝑧,𝑏,𝑚,𝜑   𝑓,𝑚,𝜑,𝑔
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)   𝐷(𝑥,𝑓,𝑚,𝑎,𝑏)   1 (𝑦)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑚,𝑎,𝑏)

Proof of Theorem ssccatid
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssccatid.d . . 3 𝐷 = (𝐶cat 𝐽)
2 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 ssccatid.c . . 3 (𝜑𝐶 ∈ Cat)
4 ssccatid.f . . 3 (𝜑𝐽 Fn (𝑆 × 𝑆))
5 ssccatid.h . . . . . 6 𝐻 = (Homf𝐶)
65, 2homffn 17599 . . . . 5 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))
76a1i 11 . . . 4 (𝜑𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
8 ssccatid.j . . . 4 (𝜑𝐽cat 𝐻)
94, 7, 8ssc1 17728 . . 3 (𝜑𝑆 ⊆ (Base‘𝐶))
101, 2, 3, 4, 9rescbas 17736 . 2 (𝜑𝑆 = (Base‘𝐷))
111, 2, 3, 4, 9reschom 17737 . 2 (𝜑𝐽 = (Hom ‘𝐷))
12 ssccatid.x . . 3 · = (comp‘𝐶)
131, 2, 3, 4, 9, 12rescco 17739 . 2 (𝜑· = (comp‘𝐷))
141ovexi 7383 . . 3 𝐷 ∈ V
1514a1i 11 . 2 (𝜑𝐷 ∈ V)
16 biid 261 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))) ↔ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤))))
17 ssccatid.i . 2 ((𝜑𝑦𝑆) → 1 ∈ (𝑦𝐽𝑦))
18 oveq2 7357 . . . 4 (𝑚 = 𝑓 → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓))
19 id 22 . . . 4 (𝑚 = 𝑓𝑚 = 𝑓)
2018, 19eqeq12d 2745 . . 3 (𝑚 = 𝑓 → (( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓))
21 oveq1 7356 . . . . 5 (𝑎 = 𝑥 → (𝑎𝐽𝑏) = (𝑥𝐽𝑏))
22 opeq1 4824 . . . . . . . 8 (𝑎 = 𝑥 → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑏⟩)
2322oveq1d 7364 . . . . . . 7 (𝑎 = 𝑥 → (⟨𝑎, 𝑏· 𝑏) = (⟨𝑥, 𝑏· 𝑏))
2423oveqd 7366 . . . . . 6 (𝑎 = 𝑥 → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚))
2524eqeq1d 2731 . . . . 5 (𝑎 = 𝑥 → (( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
2621, 25raleqbidv 3309 . . . 4 (𝑎 = 𝑥 → (∀𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚))
27 oveq2 7357 . . . . 5 (𝑏 = 𝑦 → (𝑥𝐽𝑏) = (𝑥𝐽𝑦))
28 opeq2 4825 . . . . . . . 8 (𝑏 = 𝑦 → ⟨𝑥, 𝑏⟩ = ⟨𝑥, 𝑦⟩)
29 id 22 . . . . . . . 8 (𝑏 = 𝑦𝑏 = 𝑦)
3028, 29oveq12d 7367 . . . . . . 7 (𝑏 = 𝑦 → (⟨𝑥, 𝑏· 𝑏) = (⟨𝑥, 𝑦· 𝑦))
3130oveqd 7366 . . . . . 6 (𝑏 = 𝑦 → ( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚))
3231eqeq1d 2731 . . . . 5 (𝑏 = 𝑦 → (( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
3327, 32raleqbidv 3309 . . . 4 (𝑏 = 𝑦 → (∀𝑚 ∈ (𝑥𝐽𝑏)( 1 (⟨𝑥, 𝑏· 𝑏)𝑚) = 𝑚 ↔ ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚))
34 ssccatid.l . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → ( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3534ralrimivvva 3175 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
3635adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)( 1 (⟨𝑎, 𝑏· 𝑏)𝑚) = 𝑚)
37 simpr1l 1231 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥𝑆)
38 simpr1r 1232 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦𝑆)
3926, 33, 36, 37, 38rspc2dv 3592 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑥𝐽𝑦)( 1 (⟨𝑥, 𝑦· 𝑦)𝑚) = 𝑚)
40 simpr31 1264 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐽𝑦))
4120, 39, 40rspcdva 3578 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
42 oveq1 7356 . . . 4 (𝑚 = 𝑔 → (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ))
43 id 22 . . . 4 (𝑚 = 𝑔𝑚 = 𝑔)
4442, 43eqeq12d 2745 . . 3 (𝑚 = 𝑔 → ((𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚 ↔ (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔))
45 oveq1 7356 . . . . 5 (𝑎 = 𝑦 → (𝑎𝐽𝑏) = (𝑦𝐽𝑏))
46 id 22 . . . . . . . . 9 (𝑎 = 𝑦𝑎 = 𝑦)
4746, 46opeq12d 4832 . . . . . . . 8 (𝑎 = 𝑦 → ⟨𝑎, 𝑎⟩ = ⟨𝑦, 𝑦⟩)
4847oveq1d 7364 . . . . . . 7 (𝑎 = 𝑦 → (⟨𝑎, 𝑎· 𝑏) = (⟨𝑦, 𝑦· 𝑏))
4948oveqd 7366 . . . . . 6 (𝑎 = 𝑦 → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ))
5049eqeq1d 2731 . . . . 5 (𝑎 = 𝑦 → ((𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
5145, 50raleqbidv 3309 . . . 4 (𝑎 = 𝑦 → (∀𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚))
52 oveq2 7357 . . . . 5 (𝑏 = 𝑧 → (𝑦𝐽𝑏) = (𝑦𝐽𝑧))
53 oveq2 7357 . . . . . . 7 (𝑏 = 𝑧 → (⟨𝑦, 𝑦· 𝑏) = (⟨𝑦, 𝑦· 𝑧))
5453oveqd 7366 . . . . . 6 (𝑏 = 𝑧 → (𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ))
5554eqeq1d 2731 . . . . 5 (𝑏 = 𝑧 → ((𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ (𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
5652, 55raleqbidv 3309 . . . 4 (𝑏 = 𝑧 → (∀𝑚 ∈ (𝑦𝐽𝑏)(𝑚(⟨𝑦, 𝑦· 𝑏) 1 ) = 𝑚 ↔ ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚))
57 ssccatid.r . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏))) → (𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5857ralrimivvva 3175 . . . . 5 (𝜑 → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
5958adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑎𝑆𝑏𝑆𝑚 ∈ (𝑎𝐽𝑏)(𝑚(⟨𝑎, 𝑎· 𝑏) 1 ) = 𝑚)
60 simpr2l 1233 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧𝑆)
6151, 56, 59, 38, 60rspc2dv 3592 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ∀𝑚 ∈ (𝑦𝐽𝑧)(𝑚(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑚)
62 simpr32 1265 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐽𝑧))
6344, 61, 62rspcdva 3578 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
64 simpl 482 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝜑)
65 ssccatid.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
6664, 37, 38, 60, 40, 62, 65syl132anc 1390 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))
67 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
683adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐶 ∈ Cat)
699adantr 480 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑆 ⊆ (Base‘𝐶))
7069, 37sseldd 3936 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑥 ∈ (Base‘𝐶))
7169, 38sseldd 3936 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑦 ∈ (Base‘𝐶))
7269, 60sseldd 3936 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑧 ∈ (Base‘𝐶))
734adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽 Fn (𝑆 × 𝑆))
748adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝐽cat 𝐻)
7573, 74, 37, 38ssc2 17729 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐽𝑦) ⊆ (𝑥𝐻𝑦))
7675, 40sseldd 3936 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦))
775, 2, 67, 70, 71homfval 17598 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
7876, 77eleqtrd 2830 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
7973, 74, 38, 60ssc2 17729 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐽𝑧) ⊆ (𝑦𝐻𝑧))
8079, 62sseldd 3936 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧))
815, 2, 67, 71, 72homfval 17598 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
8280, 81eleqtrd 2830 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
83 simpr2r 1234 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤𝑆)
8469, 83sseldd 3936 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑤 ∈ (Base‘𝐶))
8573, 74, 60, 83ssc2 17729 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐽𝑤) ⊆ (𝑧𝐻𝑤))
86 simpr33 1266 . . . . 5 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐽𝑤))
8785, 86sseldd 3936 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤))
885, 2, 67, 72, 84homfval 17598 . . . 4 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → (𝑧𝐻𝑤) = (𝑧(Hom ‘𝐶)𝑤))
8987, 88eleqtrd 2830 . . 3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
902, 67, 12, 68, 70, 71, 72, 78, 82, 84, 89catass 17592 . 2 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧) ∧ 𝑘 ∈ (𝑧𝐽𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
9110, 11, 13, 15, 16, 17, 41, 63, 66, 90iscatd2 17587 1 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑦𝑆1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  cat cssc 17714  cat cresc 17715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-resc 17718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator