| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rngqiprnglin 21219. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| Ref | Expression |
|---|---|
| rngqiprnglinlem1 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 3 | rng2idlring.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | ressmulr 17277 | . . . . . 6 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → · = (.r‘𝐽)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → · = (.r‘𝐽)) |
| 7 | 6 | oveqd 7407 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 1 ) = (( 1 · 𝐴)(.r‘𝐽) 1 )) |
| 8 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 10 | rng2idlring.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | rng2idlring.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐽 ∈ Ring) |
| 13 | rng2idlring.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 14 | rng2idlring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | 13, 1, 3, 11, 14, 4, 10 | rngqiprngghmlem1 21204 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽)) |
| 16 | 15 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · 𝐴) ∈ (Base‘𝐽)) |
| 17 | 8, 9, 10, 12, 16 | ringridmd 20189 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴)(.r‘𝐽) 1 ) = ( 1 · 𝐴)) |
| 18 | 7, 17 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 1 ) = ( 1 · 𝐴)) |
| 19 | 18 | oveq1d 7405 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · 𝐶)) |
| 20 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝑅 ∈ Rng) |
| 21 | 13, 1, 3, 11, 14, 4, 10 | rngqiprng1elbas 21203 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 1 ∈ 𝐵) |
| 23 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐴 ∈ 𝐵) | |
| 24 | 14, 4 | rngcl 20080 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → ( 1 · 𝐴) ∈ 𝐵) |
| 25 | 20, 22, 23, 24 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · 𝐴) ∈ 𝐵) |
| 26 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
| 27 | 14, 4 | rngass 20075 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ (( 1 · 𝐴) ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶))) |
| 28 | 20, 25, 22, 26, 27 | syl13anc 1374 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶))) |
| 29 | 14, 4 | rngass 20075 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶))) |
| 30 | 20, 22, 23, 26, 29 | syl13anc 1374 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶))) |
| 31 | 19, 28, 30 | 3eqtr3d 2773 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 Rngcrng 20068 1rcur 20097 Ringcrg 20149 2Idealc2idl 21166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-subrng 20462 df-lss 20845 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-2idl 21167 |
| This theorem is referenced by: rngqiprnglin 21219 |
| Copyright terms: Public domain | W3C validator |