MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprnglinlem1 Structured version   Visualization version   GIF version

Theorem rngqiprnglinlem1 21319
Description: Lemma 1 for rngqiprnglin 21330. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
Assertion
Ref Expression
rngqiprnglinlem1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶)))

Proof of Theorem rngqiprnglinlem1
StepHypRef Expression
1 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
21adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
4 rng2idlring.t . . . . . . 7 · = (.r𝑅)
53, 4ressmulr 17353 . . . . . 6 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → · = (.r𝐽))
76oveqd 7448 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 1 ) = (( 1 · 𝐴)(.r𝐽) 1 ))
8 eqid 2735 . . . . 5 (Base‘𝐽) = (Base‘𝐽)
9 eqid 2735 . . . . 5 (.r𝐽) = (.r𝐽)
10 rng2idlring.1 . . . . 5 1 = (1r𝐽)
11 rng2idlring.u . . . . . 6 (𝜑𝐽 ∈ Ring)
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐽 ∈ Ring)
13 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
14 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
1513, 1, 3, 11, 14, 4, 10rngqiprngghmlem1 21315 . . . . . 6 ((𝜑𝐴𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽))
1615adantrr 717 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · 𝐴) ∈ (Base‘𝐽))
178, 9, 10, 12, 16ringridmd 20287 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴)(.r𝐽) 1 ) = ( 1 · 𝐴))
187, 17eqtrd 2775 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 1 ) = ( 1 · 𝐴))
1918oveq1d 7446 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · 𝐶))
2013adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝑅 ∈ Rng)
2113, 1, 3, 11, 14, 4, 10rngqiprng1elbas 21314 . . . . 5 (𝜑1𝐵)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 1𝐵)
23 simprl 771 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐴𝐵)
2414, 4rngcl 20182 . . . 4 ((𝑅 ∈ Rng ∧ 1𝐵𝐴𝐵) → ( 1 · 𝐴) ∈ 𝐵)
2520, 22, 23, 24syl3anc 1370 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · 𝐴) ∈ 𝐵)
26 simprr 773 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐶𝐵)
2714, 4rngass 20177 . . 3 ((𝑅 ∈ Rng ∧ (( 1 · 𝐴) ∈ 𝐵1𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶)))
2820, 25, 22, 26, 27syl13anc 1371 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶)))
2914, 4rngass 20177 . . 3 ((𝑅 ∈ Rng ∧ ( 1𝐵𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶)))
3020, 22, 23, 26, 29syl13anc 1371 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶)))
3119, 28, 303eqtr3d 2783 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  .rcmulr 17299  Rngcrng 20170  1rcur 20199  Ringcrg 20251  2Idealc2idl 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-subrng 20563  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-2idl 21278
This theorem is referenced by:  rngqiprnglin  21330
  Copyright terms: Public domain W3C validator