![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rngqiprnglin 21196. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
Ref | Expression |
---|---|
rngqiprnglinlem1 | β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄) Β· ( 1 Β· πΆ)) = ( 1 Β· (π΄ Β· πΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.i | . . . . . . 7 β’ (π β πΌ β (2Idealβπ )) | |
2 | 1 | adantr 479 | . . . . . 6 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β πΌ β (2Idealβπ )) |
3 | rng2idlring.j | . . . . . . 7 β’ π½ = (π βΎs πΌ) | |
4 | rng2idlring.t | . . . . . . 7 β’ Β· = (.rβπ ) | |
5 | 3, 4 | ressmulr 17287 | . . . . . 6 β’ (πΌ β (2Idealβπ ) β Β· = (.rβπ½)) |
6 | 2, 5 | syl 17 | . . . . 5 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β Β· = (.rβπ½)) |
7 | 6 | oveqd 7434 | . . . 4 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄) Β· 1 ) = (( 1 Β· π΄)(.rβπ½) 1 )) |
8 | eqid 2725 | . . . . 5 β’ (Baseβπ½) = (Baseβπ½) | |
9 | eqid 2725 | . . . . 5 β’ (.rβπ½) = (.rβπ½) | |
10 | rng2idlring.1 | . . . . 5 β’ 1 = (1rβπ½) | |
11 | rng2idlring.u | . . . . . 6 β’ (π β π½ β Ring) | |
12 | 11 | adantr 479 | . . . . 5 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β π½ β Ring) |
13 | rng2idlring.r | . . . . . . 7 β’ (π β π β Rng) | |
14 | rng2idlring.b | . . . . . . 7 β’ π΅ = (Baseβπ ) | |
15 | 13, 1, 3, 11, 14, 4, 10 | rngqiprngghmlem1 21181 | . . . . . 6 β’ ((π β§ π΄ β π΅) β ( 1 Β· π΄) β (Baseβπ½)) |
16 | 15 | adantrr 715 | . . . . 5 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β ( 1 Β· π΄) β (Baseβπ½)) |
17 | 8, 9, 10, 12, 16 | ringridmd 20213 | . . . 4 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄)(.rβπ½) 1 ) = ( 1 Β· π΄)) |
18 | 7, 17 | eqtrd 2765 | . . 3 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄) Β· 1 ) = ( 1 Β· π΄)) |
19 | 18 | oveq1d 7432 | . 2 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β ((( 1 Β· π΄) Β· 1 ) Β· πΆ) = (( 1 Β· π΄) Β· πΆ)) |
20 | 13 | adantr 479 | . . 3 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β π β Rng) |
21 | 13, 1, 3, 11, 14, 4, 10 | rngqiprng1elbas 21180 | . . . . 5 β’ (π β 1 β π΅) |
22 | 21 | adantr 479 | . . . 4 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β 1 β π΅) |
23 | simprl 769 | . . . 4 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β π΄ β π΅) | |
24 | 14, 4 | rngcl 20108 | . . . 4 β’ ((π β Rng β§ 1 β π΅ β§ π΄ β π΅) β ( 1 Β· π΄) β π΅) |
25 | 20, 22, 23, 24 | syl3anc 1368 | . . 3 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β ( 1 Β· π΄) β π΅) |
26 | simprr 771 | . . 3 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β πΆ β π΅) | |
27 | 14, 4 | rngass 20103 | . . 3 β’ ((π β Rng β§ (( 1 Β· π΄) β π΅ β§ 1 β π΅ β§ πΆ β π΅)) β ((( 1 Β· π΄) Β· 1 ) Β· πΆ) = (( 1 Β· π΄) Β· ( 1 Β· πΆ))) |
28 | 20, 25, 22, 26, 27 | syl13anc 1369 | . 2 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β ((( 1 Β· π΄) Β· 1 ) Β· πΆ) = (( 1 Β· π΄) Β· ( 1 Β· πΆ))) |
29 | 14, 4 | rngass 20103 | . . 3 β’ ((π β Rng β§ ( 1 β π΅ β§ π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄) Β· πΆ) = ( 1 Β· (π΄ Β· πΆ))) |
30 | 20, 22, 23, 26, 29 | syl13anc 1369 | . 2 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄) Β· πΆ) = ( 1 Β· (π΄ Β· πΆ))) |
31 | 19, 28, 30 | 3eqtr3d 2773 | 1 β’ ((π β§ (π΄ β π΅ β§ πΆ β π΅)) β (( 1 Β· π΄) Β· ( 1 Β· πΆ)) = ( 1 Β· (π΄ Β· πΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βcfv 6547 (class class class)co 7417 Basecbs 17179 βΎs cress 17208 .rcmulr 17233 Rngcrng 20096 1rcur 20125 Ringcrg 20177 2Idealc2idl 21147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 df-subg 19082 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-oppr 20277 df-subrng 20487 df-lss 20820 df-sra 21062 df-rgmod 21063 df-lidl 21108 df-2idl 21148 |
This theorem is referenced by: rngqiprnglin 21196 |
Copyright terms: Public domain | W3C validator |