MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprnglinlem1 Structured version   Visualization version   GIF version

Theorem rngqiprnglinlem1 21301
Description: Lemma 1 for rngqiprnglin 21312. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
Assertion
Ref Expression
rngqiprnglinlem1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶)))

Proof of Theorem rngqiprnglinlem1
StepHypRef Expression
1 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
21adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
4 rng2idlring.t . . . . . . 7 · = (.r𝑅)
53, 4ressmulr 17351 . . . . . 6 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → · = (.r𝐽))
76oveqd 7448 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 1 ) = (( 1 · 𝐴)(.r𝐽) 1 ))
8 eqid 2737 . . . . 5 (Base‘𝐽) = (Base‘𝐽)
9 eqid 2737 . . . . 5 (.r𝐽) = (.r𝐽)
10 rng2idlring.1 . . . . 5 1 = (1r𝐽)
11 rng2idlring.u . . . . . 6 (𝜑𝐽 ∈ Ring)
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐽 ∈ Ring)
13 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
14 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
1513, 1, 3, 11, 14, 4, 10rngqiprngghmlem1 21297 . . . . . 6 ((𝜑𝐴𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽))
1615adantrr 717 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · 𝐴) ∈ (Base‘𝐽))
178, 9, 10, 12, 16ringridmd 20270 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴)(.r𝐽) 1 ) = ( 1 · 𝐴))
187, 17eqtrd 2777 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 1 ) = ( 1 · 𝐴))
1918oveq1d 7446 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · 𝐶))
2013adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝑅 ∈ Rng)
2113, 1, 3, 11, 14, 4, 10rngqiprng1elbas 21296 . . . . 5 (𝜑1𝐵)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 1𝐵)
23 simprl 771 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐴𝐵)
2414, 4rngcl 20161 . . . 4 ((𝑅 ∈ Rng ∧ 1𝐵𝐴𝐵) → ( 1 · 𝐴) ∈ 𝐵)
2520, 22, 23, 24syl3anc 1373 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · 𝐴) ∈ 𝐵)
26 simprr 773 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐶𝐵)
2714, 4rngass 20156 . . 3 ((𝑅 ∈ Rng ∧ (( 1 · 𝐴) ∈ 𝐵1𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶)))
2820, 25, 22, 26, 27syl13anc 1374 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶)))
2914, 4rngass 20156 . . 3 ((𝑅 ∈ Rng ∧ ( 1𝐵𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶)))
3020, 22, 23, 26, 29syl13anc 1374 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶)))
3119, 28, 303eqtr3d 2785 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  Rngcrng 20149  1rcur 20178  Ringcrg 20230  2Idealc2idl 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-subrng 20546  df-lss 20930  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-2idl 21260
This theorem is referenced by:  rngqiprnglin  21312
  Copyright terms: Public domain W3C validator