| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprnglinlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rngqiprnglin 21188. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| Ref | Expression |
|---|---|
| rngqiprnglinlem1 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 3 | rng2idlring.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.t | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | ressmulr 17246 | . . . . . 6 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → · = (.r‘𝐽)) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → · = (.r‘𝐽)) |
| 7 | 6 | oveqd 7386 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 1 ) = (( 1 · 𝐴)(.r‘𝐽) 1 )) |
| 8 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 10 | rng2idlring.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | rng2idlring.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐽 ∈ Ring) |
| 13 | rng2idlring.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 14 | rng2idlring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | 13, 1, 3, 11, 14, 4, 10 | rngqiprngghmlem1 21173 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽)) |
| 16 | 15 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · 𝐴) ∈ (Base‘𝐽)) |
| 17 | 8, 9, 10, 12, 16 | ringridmd 20158 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴)(.r‘𝐽) 1 ) = ( 1 · 𝐴)) |
| 18 | 7, 17 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 1 ) = ( 1 · 𝐴)) |
| 19 | 18 | oveq1d 7384 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · 𝐶)) |
| 20 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝑅 ∈ Rng) |
| 21 | 13, 1, 3, 11, 14, 4, 10 | rngqiprng1elbas 21172 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 1 ∈ 𝐵) |
| 23 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐴 ∈ 𝐵) | |
| 24 | 14, 4 | rngcl 20049 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → ( 1 · 𝐴) ∈ 𝐵) |
| 25 | 20, 22, 23, 24 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · 𝐴) ∈ 𝐵) |
| 26 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
| 27 | 14, 4 | rngass 20044 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ (( 1 · 𝐴) ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶))) |
| 28 | 20, 25, 22, 26, 27 | syl13anc 1374 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶))) |
| 29 | 14, 4 | rngass 20044 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶))) |
| 30 | 20, 22, 23, 26, 29 | syl13anc 1374 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶))) |
| 31 | 19, 28, 30 | 3eqtr3d 2772 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 Rngcrng 20037 1rcur 20066 Ringcrg 20118 2Idealc2idl 21135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-subrng 20431 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-2idl 21136 |
| This theorem is referenced by: rngqiprnglin 21188 |
| Copyright terms: Public domain | W3C validator |