MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprnglinlem1 Structured version   Visualization version   GIF version

Theorem rngqiprnglinlem1 21198
Description: Lemma 1 for rngqiprnglin 21209. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
Assertion
Ref Expression
rngqiprnglinlem1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶)))

Proof of Theorem rngqiprnglinlem1
StepHypRef Expression
1 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
21adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
4 rng2idlring.t . . . . . . 7 · = (.r𝑅)
53, 4ressmulr 17211 . . . . . 6 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → · = (.r𝐽))
76oveqd 7366 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 1 ) = (( 1 · 𝐴)(.r𝐽) 1 ))
8 eqid 2729 . . . . 5 (Base‘𝐽) = (Base‘𝐽)
9 eqid 2729 . . . . 5 (.r𝐽) = (.r𝐽)
10 rng2idlring.1 . . . . 5 1 = (1r𝐽)
11 rng2idlring.u . . . . . 6 (𝜑𝐽 ∈ Ring)
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐽 ∈ Ring)
13 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
14 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
1513, 1, 3, 11, 14, 4, 10rngqiprngghmlem1 21194 . . . . . 6 ((𝜑𝐴𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽))
1615adantrr 717 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · 𝐴) ∈ (Base‘𝐽))
178, 9, 10, 12, 16ringridmd 20158 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴)(.r𝐽) 1 ) = ( 1 · 𝐴))
187, 17eqtrd 2764 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 1 ) = ( 1 · 𝐴))
1918oveq1d 7364 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · 𝐶))
2013adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝑅 ∈ Rng)
2113, 1, 3, 11, 14, 4, 10rngqiprng1elbas 21193 . . . . 5 (𝜑1𝐵)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 1𝐵)
23 simprl 770 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐴𝐵)
2414, 4rngcl 20049 . . . 4 ((𝑅 ∈ Rng ∧ 1𝐵𝐴𝐵) → ( 1 · 𝐴) ∈ 𝐵)
2520, 22, 23, 24syl3anc 1373 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · 𝐴) ∈ 𝐵)
26 simprr 772 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐶𝐵)
2714, 4rngass 20044 . . 3 ((𝑅 ∈ Rng ∧ (( 1 · 𝐴) ∈ 𝐵1𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶)))
2820, 25, 22, 26, 27syl13anc 1374 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ((( 1 · 𝐴) · 1 ) · 𝐶) = (( 1 · 𝐴) · ( 1 · 𝐶)))
2914, 4rngass 20044 . . 3 ((𝑅 ∈ Rng ∧ ( 1𝐵𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶)))
3020, 22, 23, 26, 29syl13anc 1374 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · 𝐶) = ( 1 · (𝐴 · 𝐶)))
3119, 28, 303eqtr3d 2772 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  .rcmulr 17162  Rngcrng 20037  1rcur 20066  Ringcrg 20118  2Idealc2idl 21156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-subrng 20431  df-lss 20835  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-2idl 21157
This theorem is referenced by:  rngqiprnglin  21209
  Copyright terms: Public domain W3C validator