Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem20 Structured version   Visualization version   GIF version

Theorem knoppndvlem20 33049
Description: Lemma for knoppndv 33052. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem20.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem20.n (𝜑𝑁 ∈ ℕ)
knoppndvlem20.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem20 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)

Proof of Theorem knoppndvlem20
StepHypRef Expression
1 knoppndvlem20.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem20.n . . . . 5 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem20.1 . . . . 5 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
41, 2, 3knoppndvlem12 33041 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
54simprd 491 . . 3 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
6 2re 11432 . . . . . . . . 9 2 ∈ ℝ
76a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
82nnred 11374 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
97, 8remulcld 10394 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ)
101knoppndvlem3 33032 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1110simpld 490 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
1211recnd 10392 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
1312abscld 14559 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
149, 13remulcld 10394 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
15 1red 10364 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1614, 15resubcld 10789 . . . . 5 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
17 0red 10367 . . . . . 6 (𝜑 → 0 ∈ ℝ)
18 0lt1 10881 . . . . . . 7 0 < 1
1918a1i 11 . . . . . 6 (𝜑 → 0 < 1)
2017, 15, 16, 19, 5lttrd 10524 . . . . 5 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2116, 20elrpd 12160 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+)
2221recgt1d 12177 . . 3 (𝜑 → (1 < (((2 · 𝑁) · (abs‘𝐶)) − 1) ↔ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1))
235, 22mpbid 224 . 2 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1)
2421rprecred 12174 . . . 4 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
2524, 15jca 507 . . 3 (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ))
26 difrp 12159 . . 3 (((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+))
2725, 26syl 17 . 2 (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+))
2823, 27mpbid 224 1 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2164  wne 2999   class class class wbr 4875  cfv 6127  (class class class)co 6910  cr 10258  0cc0 10259  1c1 10260   · cmul 10264   < clt 10398  cmin 10592  -cneg 10593   / cdiv 11016  cn 11357  2c2 11413  +crp 12119  (,)cioo 12470  abscabs 14358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-ioo 12474  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360
This theorem is referenced by:  knoppndvlem21  33050  knoppndvlem22  33051
  Copyright terms: Public domain W3C validator