![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem20 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 36517. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
Ref | Expression |
---|---|
knoppndvlem20.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem20.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem20.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
Ref | Expression |
---|---|
knoppndvlem20 | ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem20.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
2 | knoppndvlem20.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | knoppndvlem20.1 | . . . . 5 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
4 | 1, 2, 3 | knoppndvlem12 36506 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
5 | 4 | simprd 495 | . . 3 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
6 | 2re 12338 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ) |
8 | 2 | nnred 12279 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | 7, 8 | remulcld 11289 | . . . . . . 7 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
10 | 1 | knoppndvlem3 36497 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
12 | 11 | recnd 11287 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
13 | 12 | abscld 15472 | . . . . . . 7 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
14 | 9, 13 | remulcld 11289 | . . . . . 6 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
15 | 1red 11260 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℝ) | |
16 | 14, 15 | resubcld 11689 | . . . . 5 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ) |
17 | 0red 11262 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 0lt1 11783 | . . . . . . 7 ⊢ 0 < 1 | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 1) |
20 | 17, 15, 16, 19, 5 | lttrd 11420 | . . . . 5 ⊢ (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
21 | 16, 20 | elrpd 13072 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+) |
22 | 21 | recgt1d 13089 | . . 3 ⊢ (𝜑 → (1 < (((2 · 𝑁) · (abs‘𝐶)) − 1) ↔ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1)) |
23 | 5, 22 | mpbid 232 | . 2 ⊢ (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1) |
24 | 21 | rprecred 13086 | . . . 4 ⊢ (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ) |
25 | 24, 15 | jca 511 | . . 3 ⊢ (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ)) |
26 | difrp 13071 | . . 3 ⊢ (((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)) | |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)) |
28 | 23, 27 | mpbid 232 | 1 ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 − cmin 11490 -cneg 11491 / cdiv 11918 ℕcn 12264 2c2 12319 ℝ+crp 13032 (,)cioo 13384 abscabs 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ioo 13388 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 |
This theorem is referenced by: knoppndvlem21 36515 knoppndvlem22 36516 |
Copyright terms: Public domain | W3C validator |