Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem20 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
Ref | Expression |
---|---|
knoppndvlem20.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem20.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem20.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
Ref | Expression |
---|---|
knoppndvlem20 | ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem20.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
2 | knoppndvlem20.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | knoppndvlem20.1 | . . . . 5 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
4 | 1, 2, 3 | knoppndvlem12 34630 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
5 | 4 | simprd 495 | . . 3 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
6 | 2re 11977 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ) |
8 | 2 | nnred 11918 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | 7, 8 | remulcld 10936 | . . . . . . 7 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
10 | 1 | knoppndvlem3 34621 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
12 | 11 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
13 | 12 | abscld 15076 | . . . . . . 7 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
14 | 9, 13 | remulcld 10936 | . . . . . 6 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
15 | 1red 10907 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℝ) | |
16 | 14, 15 | resubcld 11333 | . . . . 5 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ) |
17 | 0red 10909 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | 0lt1 11427 | . . . . . . 7 ⊢ 0 < 1 | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 1) |
20 | 17, 15, 16, 19, 5 | lttrd 11066 | . . . . 5 ⊢ (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
21 | 16, 20 | elrpd 12698 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+) |
22 | 21 | recgt1d 12715 | . . 3 ⊢ (𝜑 → (1 < (((2 · 𝑁) · (abs‘𝐶)) − 1) ↔ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1)) |
23 | 5, 22 | mpbid 231 | . 2 ⊢ (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1) |
24 | 21 | rprecred 12712 | . . . 4 ⊢ (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ) |
25 | 24, 15 | jca 511 | . . 3 ⊢ (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ)) |
26 | difrp 12697 | . . 3 ⊢ (((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)) | |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)) |
28 | 23, 27 | mpbid 231 | 1 ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 − cmin 11135 -cneg 11136 / cdiv 11562 ℕcn 11903 2c2 11958 ℝ+crp 12659 (,)cioo 13008 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ioo 13012 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: knoppndvlem21 34639 knoppndvlem22 34640 |
Copyright terms: Public domain | W3C validator |