Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem20 Structured version   Visualization version   GIF version

Theorem knoppndvlem20 36514
Description: Lemma for knoppndv 36517. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem20.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem20.n (𝜑𝑁 ∈ ℕ)
knoppndvlem20.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem20 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)

Proof of Theorem knoppndvlem20
StepHypRef Expression
1 knoppndvlem20.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem20.n . . . . 5 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem20.1 . . . . 5 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
41, 2, 3knoppndvlem12 36506 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
54simprd 495 . . 3 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
6 2re 12338 . . . . . . . . 9 2 ∈ ℝ
76a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
82nnred 12279 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
97, 8remulcld 11289 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ)
101knoppndvlem3 36497 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1110simpld 494 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
1211recnd 11287 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
1312abscld 15472 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
149, 13remulcld 11289 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
15 1red 11260 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1614, 15resubcld 11689 . . . . 5 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
17 0red 11262 . . . . . 6 (𝜑 → 0 ∈ ℝ)
18 0lt1 11783 . . . . . . 7 0 < 1
1918a1i 11 . . . . . 6 (𝜑 → 0 < 1)
2017, 15, 16, 19, 5lttrd 11420 . . . . 5 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2116, 20elrpd 13072 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+)
2221recgt1d 13089 . . 3 (𝜑 → (1 < (((2 · 𝑁) · (abs‘𝐶)) − 1) ↔ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1))
235, 22mpbid 232 . 2 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1)
2421rprecred 13086 . . . 4 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
2524, 15jca 511 . . 3 (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ))
26 difrp 13071 . . 3 (((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+))
2725, 26syl 17 . 2 (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+))
2823, 27mpbid 232 1 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  +crp 13032  (,)cioo 13384  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ioo 13388  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  knoppndvlem21  36515  knoppndvlem22  36516
  Copyright terms: Public domain W3C validator