| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem20 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36567. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem20.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem20.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem20.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem20 | ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppndvlem20.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 2 | knoppndvlem20.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | knoppndvlem20.1 | . . . . 5 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 4 | 1, 2, 3 | knoppndvlem12 36556 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| 5 | 4 | simprd 495 | . . 3 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
| 6 | 2re 12196 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ) |
| 8 | 2 | nnred 12137 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 9 | 7, 8 | remulcld 11139 | . . . . . . 7 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 10 | 1 | knoppndvlem3 36547 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 12 | 11 | recnd 11137 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 13 | 12 | abscld 15343 | . . . . . . 7 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
| 14 | 9, 13 | remulcld 11139 | . . . . . 6 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
| 15 | 1red 11110 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 16 | 14, 15 | resubcld 11542 | . . . . 5 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ) |
| 17 | 0red 11112 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 18 | 0lt1 11636 | . . . . . . 7 ⊢ 0 < 1 | |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 < 1) |
| 20 | 17, 15, 16, 19, 5 | lttrd 11271 | . . . . 5 ⊢ (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
| 21 | 16, 20 | elrpd 12928 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+) |
| 22 | 21 | recgt1d 12945 | . . 3 ⊢ (𝜑 → (1 < (((2 · 𝑁) · (abs‘𝐶)) − 1) ↔ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1)) |
| 23 | 5, 22 | mpbid 232 | . 2 ⊢ (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1) |
| 24 | 21 | rprecred 12942 | . . . 4 ⊢ (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ) |
| 25 | 24, 15 | jca 511 | . . 3 ⊢ (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ)) |
| 26 | difrp 12927 | . . 3 ⊢ (((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)) | |
| 27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)) |
| 28 | 23, 27 | mpbid 232 | 1 ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 1c1 11004 · cmul 11008 < clt 11143 − cmin 11341 -cneg 11342 / cdiv 11771 ℕcn 12122 2c2 12177 ℝ+crp 12887 (,)cioo 13242 abscabs 15138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-ioo 13246 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 |
| This theorem is referenced by: knoppndvlem21 36565 knoppndvlem22 36566 |
| Copyright terms: Public domain | W3C validator |