Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem20 Structured version   Visualization version   GIF version

Theorem knoppndvlem20 34474
Description: Lemma for knoppndv 34477. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem20.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem20.n (𝜑𝑁 ∈ ℕ)
knoppndvlem20.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem20 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)

Proof of Theorem knoppndvlem20
StepHypRef Expression
1 knoppndvlem20.c . . . . 5 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem20.n . . . . 5 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem20.1 . . . . 5 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
41, 2, 3knoppndvlem12 34466 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
54simprd 499 . . 3 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
6 2re 11928 . . . . . . . . 9 2 ∈ ℝ
76a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
82nnred 11869 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
97, 8remulcld 10887 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ)
101knoppndvlem3 34457 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1110simpld 498 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
1211recnd 10885 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
1312abscld 15024 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
149, 13remulcld 10887 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
15 1red 10858 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1614, 15resubcld 11284 . . . . 5 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
17 0red 10860 . . . . . 6 (𝜑 → 0 ∈ ℝ)
18 0lt1 11378 . . . . . . 7 0 < 1
1918a1i 11 . . . . . 6 (𝜑 → 0 < 1)
2017, 15, 16, 19, 5lttrd 11017 . . . . 5 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2116, 20elrpd 12649 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+)
2221recgt1d 12666 . . 3 (𝜑 → (1 < (((2 · 𝑁) · (abs‘𝐶)) − 1) ↔ (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1))
235, 22mpbid 235 . 2 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1)
2421rprecred 12663 . . . 4 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
2524, 15jca 515 . . 3 (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ))
26 difrp 12648 . . 3 (((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+))
2725, 26syl 17 . 2 (𝜑 → ((1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) < 1 ↔ (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+))
2823, 27mpbid 235 1 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wne 2941   class class class wbr 5067  cfv 6397  (class class class)co 7231  cr 10752  0cc0 10753  1c1 10754   · cmul 10758   < clt 10891  cmin 11086  -cneg 11087   / cdiv 11513  cn 11854  2c2 11909  +crp 12610  (,)cioo 12959  abscabs 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-en 8647  df-dom 8648  df-sdom 8649  df-sup 9082  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-n0 12115  df-z 12201  df-uz 12463  df-rp 12611  df-ioo 12963  df-seq 13599  df-exp 13660  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823
This theorem is referenced by:  knoppndvlem21  34475  knoppndvlem22  34476
  Copyright terms: Public domain W3C validator