| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnval2 | Structured version Visualization version GIF version | ||
| Description: Value of the signum of a real number, expresssed using absolute value. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| sgnval2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) | |
| 2 | 0red 11115 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ∈ ℝ) | |
| 3 | 1 | recnd 11140 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ) |
| 5 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≠ 0) | |
| 6 | 4, 4, 5 | divneg2d 11911 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = (𝐴 / -𝐴)) |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | |
| 8 | 3, 7 | dividd 11895 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / 𝐴) = 1) |
| 10 | 9 | negeqd 11354 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = -1) |
| 11 | 6, 10 | eqtr3d 2768 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / -𝐴) = -1) |
| 12 | absnid 15205 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
| 13 | 12 | adantlr 715 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) |
| 14 | 13 | oveq2d 7362 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / (abs‘𝐴)) = (𝐴 / -𝐴)) |
| 15 | 1 | rexrd 11162 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ*) |
| 16 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ) |
| 17 | 0red 11115 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ∈ ℝ) | |
| 18 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) | |
| 19 | 7 | necomd 2983 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ≠ 𝐴) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ≠ 𝐴) |
| 21 | 16, 17, 18, 20 | leneltd 11267 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 < 0) |
| 22 | sgnn 15001 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
| 23 | 15, 21, 22 | syl2an2r 685 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = -1) |
| 24 | 11, 14, 23 | 3eqtr4rd 2777 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| 25 | 8 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / 𝐴) = 1) |
| 26 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 27 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
| 28 | 26, 27 | absidd 15330 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
| 29 | 28 | oveq2d 7362 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / (abs‘𝐴)) = (𝐴 / 𝐴)) |
| 30 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ≠ 0) | |
| 31 | 26, 27, 30 | ne0gt0d 11250 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 < 𝐴) |
| 32 | sgnp 14997 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
| 33 | 15, 31, 32 | syl2an2r 685 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = 1) |
| 34 | 25, 29, 33 | 3eqtr4rd 2777 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| 35 | 1, 2, 24, 34 | lecasei 11219 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 -cneg 11345 / cdiv 11774 sgncsgn 14993 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-sgn 14994 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: cos9thpiminplylem2 33796 |
| Copyright terms: Public domain | W3C validator |