Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnval2 Structured version   Visualization version   GIF version

Theorem sgnval2 32648
Description: Value of the signum of a real number, expresssed using absolute value. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Assertion
Ref Expression
sgnval2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))

Proof of Theorem sgnval2
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
2 0red 11231 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ∈ ℝ)
31recnd 11256 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
43adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
5 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≠ 0)
64, 4, 5divneg2d 12024 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = (𝐴 / -𝐴))
7 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
83, 7dividd 12008 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
98adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / 𝐴) = 1)
109negeqd 11469 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = -1)
116, 10eqtr3d 2771 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / -𝐴) = -1)
12 absnid 15306 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
1312adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
1413oveq2d 7416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / (abs‘𝐴)) = (𝐴 / -𝐴))
151rexrd 11278 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ*)
161adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ)
17 0red 11231 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ∈ ℝ)
18 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
197necomd 2986 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ≠ 𝐴)
2019adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ≠ 𝐴)
2116, 17, 18, 20leneltd 11382 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 < 0)
22 sgnn 15102 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
2315, 21, 22syl2an2r 685 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = -1)
2411, 14, 233eqtr4rd 2780 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))
258adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / 𝐴) = 1)
261adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
27 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
2826, 27absidd 15430 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
2928oveq2d 7416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / (abs‘𝐴)) = (𝐴 / 𝐴))
30 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ≠ 0)
3126, 27, 30ne0gt0d 11365 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 < 𝐴)
32 sgnp 15098 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
3315, 31, 32syl2an2r 685 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = 1)
3425, 29, 333eqtr4rd 2780 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))
351, 2, 24, 34lecasei 11334 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5117  cfv 6528  (class class class)co 7400  cc 11120  cr 11121  0cc0 11122  1c1 11123  *cxr 11261   < clt 11262  cle 11263  -cneg 11460   / cdiv 11887  sgncsgn 15094  abscabs 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-sup 9449  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-seq 14010  df-exp 14070  df-sgn 15095  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244
This theorem is referenced by:  cos9thpiminplylem2  33752
  Copyright terms: Public domain W3C validator