| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnval2 | Structured version Visualization version GIF version | ||
| Description: Value of the signum of a real number, expresssed using absolute value. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| sgnval2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) | |
| 2 | 0red 11231 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ∈ ℝ) | |
| 3 | 1 | recnd 11256 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ) |
| 5 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≠ 0) | |
| 6 | 4, 4, 5 | divneg2d 12024 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = (𝐴 / -𝐴)) |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | |
| 8 | 3, 7 | dividd 12008 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / 𝐴) = 1) |
| 10 | 9 | negeqd 11469 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = -1) |
| 11 | 6, 10 | eqtr3d 2771 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / -𝐴) = -1) |
| 12 | absnid 15306 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
| 13 | 12 | adantlr 715 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) |
| 14 | 13 | oveq2d 7416 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / (abs‘𝐴)) = (𝐴 / -𝐴)) |
| 15 | 1 | rexrd 11278 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ*) |
| 16 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ) |
| 17 | 0red 11231 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ∈ ℝ) | |
| 18 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) | |
| 19 | 7 | necomd 2986 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ≠ 𝐴) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ≠ 𝐴) |
| 21 | 16, 17, 18, 20 | leneltd 11382 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 < 0) |
| 22 | sgnn 15102 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
| 23 | 15, 21, 22 | syl2an2r 685 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = -1) |
| 24 | 11, 14, 23 | 3eqtr4rd 2780 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| 25 | 8 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / 𝐴) = 1) |
| 26 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 27 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
| 28 | 26, 27 | absidd 15430 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
| 29 | 28 | oveq2d 7416 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / (abs‘𝐴)) = (𝐴 / 𝐴)) |
| 30 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ≠ 0) | |
| 31 | 26, 27, 30 | ne0gt0d 11365 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 < 𝐴) |
| 32 | sgnp 15098 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
| 33 | 15, 31, 32 | syl2an2r 685 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = 1) |
| 34 | 25, 29, 33 | 3eqtr4rd 2780 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| 35 | 1, 2, 24, 34 | lecasei 11334 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 ℂcc 11120 ℝcr 11121 0cc0 11122 1c1 11123 ℝ*cxr 11261 < clt 11262 ≤ cle 11263 -cneg 11460 / cdiv 11887 sgncsgn 15094 abscabs 15242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-sup 9449 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-seq 14010 df-exp 14070 df-sgn 15095 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 |
| This theorem is referenced by: cos9thpiminplylem2 33752 |
| Copyright terms: Public domain | W3C validator |