Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnval2 Structured version   Visualization version   GIF version

Theorem sgnval2 32664
Description: Value of the signum of a real number, expresssed using absolute value. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Assertion
Ref Expression
sgnval2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))

Proof of Theorem sgnval2
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
2 0red 11183 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ∈ ℝ)
31recnd 11208 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
43adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
5 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≠ 0)
64, 4, 5divneg2d 11978 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = (𝐴 / -𝐴))
7 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
83, 7dividd 11962 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
98adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / 𝐴) = 1)
109negeqd 11421 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → -(𝐴 / 𝐴) = -1)
116, 10eqtr3d 2767 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / -𝐴) = -1)
12 absnid 15270 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
1312adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
1413oveq2d 7405 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (𝐴 / (abs‘𝐴)) = (𝐴 / -𝐴))
151rexrd 11230 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ*)
161adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ)
17 0red 11183 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ∈ ℝ)
18 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
197necomd 2981 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ≠ 𝐴)
2019adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 0 ≠ 𝐴)
2116, 17, 18, 20leneltd 11334 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → 𝐴 < 0)
22 sgnn 15066 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
2315, 21, 22syl2an2r 685 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = -1)
2411, 14, 233eqtr4rd 2776 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≤ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))
258adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / 𝐴) = 1)
261adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
27 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
2826, 27absidd 15395 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
2928oveq2d 7405 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (𝐴 / (abs‘𝐴)) = (𝐴 / 𝐴))
30 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 𝐴 ≠ 0)
3126, 27, 30ne0gt0d 11317 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → 0 < 𝐴)
32 sgnp 15062 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
3315, 31, 32syl2an2r 685 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = 1)
3425, 29, 333eqtr4rd 2776 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 0 ≤ 𝐴) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))
351, 2, 24, 34lecasei 11286 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5109  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075  *cxr 11213   < clt 11214  cle 11215  -cneg 11412   / cdiv 11841  sgncsgn 15058  abscabs 15206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-seq 13973  df-exp 14033  df-sgn 15059  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208
This theorem is referenced by:  cos9thpiminplylem2  33779
  Copyright terms: Public domain W3C validator