Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpreimage | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpreimage.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpreimage.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpreimage.d | ⊢ 𝐷 = dom 𝐹 |
smfpreimage.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
smfpreimage | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpreimage.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | smfpreimage.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
3 | smfpreimage.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | smfpreimage.d | . . . . 5 ⊢ 𝐷 = dom 𝐹 | |
5 | 3, 4 | issmfge 44695 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) |
6 | 2, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷))) |
7 | 6 | simp3d 1144 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
8 | breq1 5100 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 ≤ (𝐹‘𝑥) ↔ 𝐴 ≤ (𝐹‘𝑥))) | |
9 | 8 | rabbidv 3412 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)}) |
10 | 9 | eleq1d 2822 | . . 3 ⊢ (𝑎 = 𝐴 → ({𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷))) |
11 | 10 | rspcva 3572 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) → {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
12 | 1, 7, 11 | syl2anc 585 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 {crab 3404 ⊆ wss 3902 ∪ cuni 4857 class class class wbr 5097 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ℝcr 10976 ≤ cle 11116 ↾t crest 17229 SAlgcsalg 44235 SMblFncsmblfn 44620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cc 10297 ax-ac2 10325 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-sup 9304 df-inf 9305 df-card 9801 df-acn 9804 df-ac 9978 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-q 12795 df-rp 12837 df-ioo 13189 df-ico 13191 df-fl 13618 df-rest 17231 df-salg 44236 df-smblfn 44621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |