Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpreimage Structured version   Visualization version   GIF version

Theorem smfpreimage 41931
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpreimage.s (𝜑𝑆 ∈ SAlg)
smfpreimage.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpreimage.d 𝐷 = dom 𝐹
smfpreimage.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfpreimage (𝜑 → {𝑥𝐷𝐴 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem smfpreimage
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfpreimage.a . 2 (𝜑𝐴 ∈ ℝ)
2 smfpreimage.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpreimage.s . . . . 5 (𝜑𝑆 ∈ SAlg)
4 smfpreimage.d . . . . 5 𝐷 = dom 𝐹
53, 4issmfge 41919 . . . 4 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))))
62, 5mpbid 224 . . 3 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
76simp3d 1135 . 2 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
8 breq1 4891 . . . . 5 (𝑎 = 𝐴 → (𝑎 ≤ (𝐹𝑥) ↔ 𝐴 ≤ (𝐹𝑥)))
98rabbidv 3386 . . . 4 (𝑎 = 𝐴 → {𝑥𝐷𝑎 ≤ (𝐹𝑥)} = {𝑥𝐷𝐴 ≤ (𝐹𝑥)})
109eleq1d 2844 . . 3 (𝑎 = 𝐴 → ({𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷𝐴 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)))
1110rspcva 3509 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷𝑎 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷)) → {𝑥𝐷𝐴 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
121, 7, 11syl2anc 579 1 (𝜑 → {𝑥𝐷𝐴 ≤ (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  wral 3090  {crab 3094  wss 3792   cuni 4673   class class class wbr 4888  dom cdm 5357  wf 6133  cfv 6137  (class class class)co 6924  cr 10273  cle 10414  t crest 16478  SAlgcsalg 41466  SMblFncsmblfn 41850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cc 9594  ax-ac2 9622  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-card 9100  df-acn 9103  df-ac 9274  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-n0 11648  df-z 11734  df-uz 11998  df-q 12101  df-rp 12143  df-ioo 12496  df-ico 12498  df-fl 12917  df-rest 16480  df-salg 41467  df-smblfn 41851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator