| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > srapwov | Structured version Visualization version GIF version | ||
| Description: The "power" operation on a subring algebra. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| srapwov.a | ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
| srapwov.w | ⊢ (𝜑 → 𝑊 ∈ Ring) |
| srapwov.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| Ref | Expression |
|---|---|
| srapwov | ⊢ (𝜑 → (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝑊)) | |
| 2 | eqid 2731 | . 2 ⊢ (.g‘(mulGrp‘𝐴)) = (.g‘(mulGrp‘𝐴)) | |
| 3 | eqid 2731 | . . . 4 ⊢ (mulGrp‘𝑊) = (mulGrp‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | 3, 4 | mgpbas 20058 | . . 3 ⊢ (Base‘𝑊) = (Base‘(mulGrp‘𝑊)) |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (Base‘𝑊) = (Base‘(mulGrp‘𝑊))) |
| 7 | srapwov.a | . . . . 5 ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 9 | srapwov.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 10 | 8, 9 | srabase 21106 | . . 3 ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝐴)) |
| 11 | eqid 2731 | . . . 4 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 12 | eqid 2731 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 13 | 11, 12 | mgpbas 20058 | . . 3 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
| 14 | 10, 13 | eqtrdi 2782 | . 2 ⊢ (𝜑 → (Base‘𝑊) = (Base‘(mulGrp‘𝐴))) |
| 15 | ssidd 3953 | . 2 ⊢ (𝜑 → (Base‘𝑊) ⊆ (Base‘𝑊)) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 17 | 3, 16 | mgpplusg 20057 | . . . 4 ⊢ (.r‘𝑊) = (+g‘(mulGrp‘𝑊)) |
| 18 | 17 | eqcomi 2740 | . . 3 ⊢ (+g‘(mulGrp‘𝑊)) = (.r‘𝑊) |
| 19 | srapwov.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
| 21 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) | |
| 22 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) | |
| 23 | 4, 18, 20, 21, 22 | ringcld 20173 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘(mulGrp‘𝑊))𝑦) ∈ (Base‘𝑊)) |
| 24 | 8, 9 | sramulr 21108 | . . . 4 ⊢ (𝜑 → (.r‘𝑊) = (.r‘𝐴)) |
| 25 | 7 | fveq2i 6820 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘((subringAlg ‘𝑊)‘𝑆)) |
| 26 | 7 | fveq2i 6820 | . . . . 5 ⊢ (.r‘𝐴) = (.r‘((subringAlg ‘𝑊)‘𝑆)) |
| 27 | 25, 26 | mgpplusg 20057 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 28 | 24, 17, 27 | 3eqtr3g 2789 | . . 3 ⊢ (𝜑 → (+g‘(mulGrp‘𝑊)) = (+g‘(mulGrp‘𝐴))) |
| 29 | 28 | oveqdr 7369 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘(mulGrp‘𝑊))𝑦) = (𝑥(+g‘(mulGrp‘𝐴))𝑦)) |
| 30 | 1, 2, 6, 14, 15, 23, 29 | mulgpropd 19024 | 1 ⊢ (𝜑 → (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 .gcmg 18975 mulGrpcmgp 20053 Ringcrg 20146 subringAlg csra 21100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-seq 13904 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-minusg 18845 df-mulg 18976 df-mgp 20054 df-ring 20148 df-sra 21102 |
| This theorem is referenced by: extdgfialglem2 33698 |
| Copyright terms: Public domain | W3C validator |