| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > srapwov | Structured version Visualization version GIF version | ||
| Description: The "power" operation on a subring algebra. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| srapwov.a | ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
| srapwov.w | ⊢ (𝜑 → 𝑊 ∈ Ring) |
| srapwov.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| Ref | Expression |
|---|---|
| srapwov | ⊢ (𝜑 → (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝑊)) | |
| 2 | eqid 2733 | . 2 ⊢ (.g‘(mulGrp‘𝐴)) = (.g‘(mulGrp‘𝐴)) | |
| 3 | eqid 2733 | . . . 4 ⊢ (mulGrp‘𝑊) = (mulGrp‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | 3, 4 | mgpbas 20071 | . . 3 ⊢ (Base‘𝑊) = (Base‘(mulGrp‘𝑊)) |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (Base‘𝑊) = (Base‘(mulGrp‘𝑊))) |
| 7 | srapwov.a | . . . . 5 ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 9 | srapwov.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 10 | 8, 9 | srabase 21120 | . . 3 ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝐴)) |
| 11 | eqid 2733 | . . . 4 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 12 | eqid 2733 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 13 | 11, 12 | mgpbas 20071 | . . 3 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
| 14 | 10, 13 | eqtrdi 2784 | . 2 ⊢ (𝜑 → (Base‘𝑊) = (Base‘(mulGrp‘𝐴))) |
| 15 | ssidd 3954 | . 2 ⊢ (𝜑 → (Base‘𝑊) ⊆ (Base‘𝑊)) | |
| 16 | eqid 2733 | . . . . 5 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
| 17 | 3, 16 | mgpplusg 20070 | . . . 4 ⊢ (.r‘𝑊) = (+g‘(mulGrp‘𝑊)) |
| 18 | 17 | eqcomi 2742 | . . 3 ⊢ (+g‘(mulGrp‘𝑊)) = (.r‘𝑊) |
| 19 | srapwov.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
| 21 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) | |
| 22 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) | |
| 23 | 4, 18, 20, 21, 22 | ringcld 20186 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘(mulGrp‘𝑊))𝑦) ∈ (Base‘𝑊)) |
| 24 | 8, 9 | sramulr 21122 | . . . 4 ⊢ (𝜑 → (.r‘𝑊) = (.r‘𝐴)) |
| 25 | 7 | fveq2i 6834 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘((subringAlg ‘𝑊)‘𝑆)) |
| 26 | 7 | fveq2i 6834 | . . . . 5 ⊢ (.r‘𝐴) = (.r‘((subringAlg ‘𝑊)‘𝑆)) |
| 27 | 25, 26 | mgpplusg 20070 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 28 | 24, 17, 27 | 3eqtr3g 2791 | . . 3 ⊢ (𝜑 → (+g‘(mulGrp‘𝑊)) = (+g‘(mulGrp‘𝐴))) |
| 29 | 28 | oveqdr 7383 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘(mulGrp‘𝑊))𝑦) = (𝑥(+g‘(mulGrp‘𝐴))𝑦)) |
| 30 | 1, 2, 6, 14, 15, 23, 29 | mulgpropd 19037 | 1 ⊢ (𝜑 → (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6489 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 .gcmg 18988 mulGrpcmgp 20066 Ringcrg 20159 subringAlg csra 21114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-seq 13916 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-minusg 18858 df-mulg 18989 df-mgp 20067 df-ring 20161 df-sra 21116 |
| This theorem is referenced by: extdgfialglem2 33778 |
| Copyright terms: Public domain | W3C validator |