MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcid Structured version   Visualization version   GIF version

Theorem subcid 16903
Description: The identity in a subcategory is the same as the original category. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subccat.1 𝐷 = (𝐶cat 𝐽)
subccat.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subccatid.1 (𝜑𝐽 Fn (𝑆 × 𝑆))
subccatid.2 1 = (Id‘𝐶)
subcid.x (𝜑𝑋𝑆)
Assertion
Ref Expression
subcid (𝜑 → ( 1𝑋) = ((Id‘𝐷)‘𝑋))

Proof of Theorem subcid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subccat.1 . . . . 5 𝐷 = (𝐶cat 𝐽)
2 subccat.j . . . . 5 (𝜑𝐽 ∈ (Subcat‘𝐶))
3 subccatid.1 . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
4 subccatid.2 . . . . 5 1 = (Id‘𝐶)
51, 2, 3, 4subccatid 16902 . . . 4 (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥))))
65simprd 491 . . 3 (𝜑 → (Id‘𝐷) = (𝑥𝑆 ↦ ( 1𝑥)))
7 simpr 479 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6452 . . 3 ((𝜑𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
9 subcid.x . . 3 (𝜑𝑋𝑆)
10 fvexd 6463 . . 3 (𝜑 → ( 1𝑋) ∈ V)
116, 8, 9, 10fvmptd 6550 . 2 (𝜑 → ((Id‘𝐷)‘𝑋) = ( 1𝑋))
1211eqcomd 2784 1 (𝜑 → ( 1𝑋) = ((Id‘𝐷)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cmpt 4967   × cxp 5355   Fn wfn 6132  cfv 6137  (class class class)co 6924  Catccat 16721  Idccid 16722  cat cresc 16864  Subcatcsubc 16865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-hom 16373  df-cco 16374  df-cat 16725  df-cid 16726  df-homf 16727  df-ssc 16866  df-resc 16867  df-subc 16868
This theorem is referenced by:  subsubc  16909  funcres  16952  funcres2b  16953  rngcid  43008  ringcid  43054
  Copyright terms: Public domain W3C validator