MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nonsq Structured version   Visualization version   GIF version

Theorem nonsq 16731
Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nonsq (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)

Proof of Theorem nonsq
StepHypRef Expression
1 nn0z 12614 . . . 4 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
21ad2antlr 726 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℤ)
3 simprl 770 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < 𝐴)
4 nn0re 12512 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
54ad2antrr 725 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ)
65recnd 11273 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℂ)
76sqsqrtd 15419 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) = 𝐴)
83, 7breqtrrd 5176 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < ((√‘𝐴)↑2))
9 nn0re 12512 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
109ad2antlr 726 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℝ)
11 nn0ge0 12528 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
1211ad2antrr 725 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐴)
135, 12resqrtcld 15397 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) ∈ ℝ)
14 nn0ge0 12528 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
1514ad2antlr 726 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐵)
165, 12sqrtge0d 15400 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (√‘𝐴))
1710, 13, 15, 16lt2sqd 14251 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 < (√‘𝐴) ↔ (𝐵↑2) < ((√‘𝐴)↑2)))
188, 17mpbird 257 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 < (√‘𝐴))
19 simprr 772 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 < ((𝐵 + 1)↑2))
207, 19eqbrtrd 5170 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) < ((𝐵 + 1)↑2))
21 peano2re 11418 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
2210, 21syl 17 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℝ)
23 peano2nn0 12543 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
24 nn0ge0 12528 . . . . . . 7 ((𝐵 + 1) ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2523, 24syl 17 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2625ad2antlr 726 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (𝐵 + 1))
2713, 22, 16, 26lt2sqd 14251 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) < (𝐵 + 1) ↔ ((√‘𝐴)↑2) < ((𝐵 + 1)↑2)))
2820, 27mpbird 257 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) < (𝐵 + 1))
29 btwnnz 12669 . . 3 ((𝐵 ∈ ℤ ∧ 𝐵 < (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) → ¬ (√‘𝐴) ∈ ℤ)
302, 18, 28, 29syl3anc 1369 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℤ)
31 nn0z 12614 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3231ad2antrr 725 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℤ)
33 zsqrtelqelz 16730 . . . 4 ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
3433ex 412 . . 3 (𝐴 ∈ ℤ → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ))
3532, 34syl 17 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ))
3630, 35mtod 197 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  cr 11138  0cc0 11139  1c1 11140   + caddc 11142   < clt 11279  cle 11280  2c2 12298  0cn0 12503  cz 12589  cq 12963  cexp 14059  csqrt 15213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-gcd 16470  df-numer 16707  df-denom 16708
This theorem is referenced by:  rmspecsqrtnq  42326
  Copyright terms: Public domain W3C validator