| Intuitionistic Logic Explorer Theorem List (p. 154 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | csgm 15301 | Extend class notation with the divisor function. |
| class σ | ||
| Definition | df-sgm 15302* | Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | ||
| Theorem | sgmval 15303* | The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝑐𝐴)) | ||
| Theorem | sgmval2 15304* | The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | ||
| Theorem | 0sgm 15305* | The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ ℕ → (0 σ 𝐴) = (♯‘{𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴})) | ||
| Theorem | sgmf 15306 | The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ σ :(ℂ × ℕ)⟶ℂ | ||
| Theorem | sgmcl 15307 | Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℂ) | ||
| Theorem | sgmnncl 15308 | Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) | ||
| Theorem | dvdsppwf1o 15309* | A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃↑𝑛)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) | ||
| Theorem | mpodvdsmulf1o 15310* | If 𝑀 and 𝑁 are two coprime integers, multiplication forms a bijection from the set of pairs 〈𝑗, 𝑘〉 where 𝑗 ∥ 𝑀 and 𝑘 ∥ 𝑁, to the set of divisors of 𝑀 · 𝑁. (Contributed by GG, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} & ⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} ⇒ ⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) | ||
| Theorem | fsumdvdsmul 15311* | Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘 ∥ 𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 8019. (Revised by GG, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} & ⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) = 𝐷) & ⊢ (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑖 ∈ 𝑍 𝐶) | ||
| Theorem | sgmppw 15312* | The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) | ||
| Theorem | 0sgmppw 15313 | A prime power 𝑃↑𝐾 has 𝐾 + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃↑𝐾)) = (𝐾 + 1)) | ||
| Theorem | 1sgmprm 15314 | The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) | ||
| Theorem | 1sgm2ppw 15315 | The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) | ||
| Theorem | sgmmul 15316 | The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) | ||
| Theorem | mersenne 15317 | A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ) | ||
| Theorem | perfect1 15318 | Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1))) | ||
| Theorem | perfectlem1 15319 | Lemma for perfect 15321. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | ||
| Theorem | perfectlem2 15320 | Lemma for perfect 15321. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by Wolf Lammen, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | ||
| Theorem | perfect 15321* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime), and therefore 𝑝 is also prime, see mersenne 15317. This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | ||
If the congruence ((𝑥↑2) mod 𝑝) = (𝑛 mod 𝑝) has a solution we say that 𝑛 is a quadratic residue mod 𝑝. If the congruence has no solution we say that 𝑛 is a quadratic nonresidue mod 𝑝, see definition in [ApostolNT] p. 178. The Legendre symbol (𝑛 /L 𝑝) is defined in a way that its value is 1 if 𝑛 is a quadratic residue mod 𝑝 and -1 if 𝑛 is a quadratic nonresidue mod 𝑝 (and 0 if 𝑝 divides 𝑛). Originally, the Legendre symbol (𝑁 /L 𝑃) was defined for odd primes 𝑃 only (and arbitrary integers 𝑁) by Adrien-Marie Legendre in 1798, see definition in [ApostolNT] p. 179. It was generalized to be defined for any positive odd integer by Carl Gustav Jacob Jacobi in 1837 (therefore called "Jacobi symbol" since then), see definition in [ApostolNT] p. 188. Finally, it was generalized to be defined for any integer by Leopold Kronecker in 1885 (therefore called "Kronecker symbol" since then). The definition df-lgs 15323 for the "Legendre symbol" /L is actually the definition of the "Kronecker symbol". Since only one definition (and one class symbol) are provided in set.mm, the names "Legendre symbol", "Jacobi symbol" and "Kronecker symbol" are used synonymously for /L, but mostly it is called "Legendre symbol", even if it is used in the context of a "Jacobi symbol" or "Kronecker symbol". | ||
| Syntax | clgs 15322 | Extend class notation with the Legendre symbol function. |
| class /L | ||
| Definition | df-lgs 15323* | Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) | ||
| Theorem | zabsle1 15324 | {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1)) | ||
| Theorem | lgslem1 15325 | When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | ||
| Theorem | lgslem2 15326 | The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) | ||
| Theorem | lgslem3 15327* | The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐴 · 𝐵) ∈ 𝑍) | ||
| Theorem | lgslem4 15328* | Lemma for lgsfcl2 15331. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) | ||
| Theorem | lgsval 15329* | Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) | ||
| Theorem | lgsfvalg 15330* | Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1)) | ||
| Theorem | lgsfcl2 15331* | The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 15324). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) | ||
| Theorem | lgscllem 15332* | The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||
| Theorem | lgsfcl 15333* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||
| Theorem | lgsfle1 15334* | The function 𝐹 has magnitude less or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹‘𝑀)) ≤ 1) | ||
| Theorem | lgsval2lem 15335* | Lemma for lgsval2 15341. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) | ||
| Theorem | lgsval4lem 15336* | Lemma for lgsval4 15345. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) | ||
| Theorem | lgscl2 15337* | The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||
| Theorem | lgs0 15338 | The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) | ||
| Theorem | lgscl 15339 | The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | ||
| Theorem | lgsle1 15340 | The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 15339 this implies that it takes values in {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1) | ||
| Theorem | lgsval2 15341 | The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) = if(𝑃 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))) | ||
| Theorem | lgs2 15342 | The Legendre symbol at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))) | ||
| Theorem | lgsval3 15343 | The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) | ||
| Theorem | lgsvalmod 15344 | The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | ||
| Theorem | lgsval4 15345* | Restate lgsval 15329 for nonzero 𝑁, where the function 𝐹 has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) | ||
| Theorem | lgsfcl3 15346* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||
| Theorem | lgsval4a 15347* | Same as lgsval4 15345 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) | ||
| Theorem | lgscl1 15348 | The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ {-1, 0, 1}) | ||
| Theorem | lgsneg 15349 | The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | ||
| Theorem | lgsneg1 15350 | The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) | ||
| Theorem | lgsmod 15351 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁)) | ||
| Theorem | lgsdilem 15352 | Lemma for lgsdi 15362 and lgsdir 15360: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) | ||
| Theorem | lgsdir2lem1 15353 | Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)) | ||
| Theorem | lgsdir2lem2 15354 | Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))) & ⊢ 𝑀 = (𝐾 + 1) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑁 ∈ 𝑆 ⇒ ⊢ (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))) | ||
| Theorem | lgsdir2lem3 15355 | Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})) | ||
| Theorem | lgsdir2lem4 15356 | Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7})) | ||
| Theorem | lgsdir2lem5 15357 | Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7}) | ||
| Theorem | lgsdir2 15358 | The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2))) | ||
| Theorem | lgsdirprm 15359 | The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) | ||
| Theorem | lgsdir 15360 | The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||
| Theorem | lgsdilem2 15361* | Lemma for lgsdi 15362. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁)))) | ||
| Theorem | lgsdi 15362 | The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||
| Theorem | lgsne0 15363 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | lgsabs1 15364 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | lgssq 15365 | The Legendre symbol at a square is equal to 1. Together with lgsmod 15351 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) | ||
| Theorem | lgssq2 15366 | The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1) | ||
| Theorem | lgsprme0 15367 | The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) | ||
| Theorem | 1lgs 15368 | The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ (𝑁 ∈ ℤ → (1 /L 𝑁) = 1) | ||
| Theorem | lgs1 15369 | The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴 /L 1) = 1) | ||
| Theorem | lgsmodeq 15370 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁))) | ||
| Theorem | lgsmulsqcoprm 15371 | The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁)) | ||
| Theorem | lgsdirnn0 15372 | Variation on lgsdir 15360 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||
| Theorem | lgsdinn0 15373 | Variation on lgsdi 15362 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||
Gauss' Lemma is valid for any integer not dividing the given prime number. In the following, only the special case for 2 (not dividing any odd prime) is proven, see gausslemma2d 15394. The general case is still to prove. | ||
| Theorem | gausslemma2dlem0a 15374 | Auxiliary lemma 1 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℕ) | ||
| Theorem | gausslemma2dlem0b 15375 | Auxiliary lemma 2 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → 𝐻 ∈ ℕ) | ||
| Theorem | gausslemma2dlem0c 15376 | Auxiliary lemma 3 for gausslemma2d 15394. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) | ||
| Theorem | gausslemma2dlem0d 15377 | Auxiliary lemma 4 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → 𝑀 ∈ ℕ0) | ||
| Theorem | gausslemma2dlem0e 15378 | Auxiliary lemma 5 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (𝑀 · 2) < (𝑃 / 2)) | ||
| Theorem | gausslemma2dlem0f 15379 | Auxiliary lemma 6 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) | ||
| Theorem | gausslemma2dlem0g 15380 | Auxiliary lemma 7 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → 𝑀 ≤ 𝐻) | ||
| Theorem | gausslemma2dlem0h 15381 | Auxiliary lemma 8 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ0) | ||
| Theorem | gausslemma2dlem0i 15382 | Auxiliary lemma 9 for gausslemma2d 15394. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) | ||
| Theorem | gausslemma2dlem1a 15383* | Lemma for gausslemma2dlem1 15386. (Contributed by AV, 1-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → ran 𝑅 = (1...𝐻)) | ||
| Theorem | gausslemma2dlem1cl 15384 | Lemma for gausslemma2dlem1 15386. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) ⇒ ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) | ||
| Theorem | gausslemma2dlem1f1o 15385* | Lemma for gausslemma2dlem1 15386. (Contributed by Jim Kingdon, 9-Aug-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | ||
| Theorem | gausslemma2dlem1 15386* | Lemma 1 for gausslemma2d 15394. (Contributed by AV, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | ||
| Theorem | gausslemma2dlem2 15387* | Lemma 2 for gausslemma2d 15394. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2)) | ||
| Theorem | gausslemma2dlem3 15388* | Lemma 3 for gausslemma2d 15394. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) | ||
| Theorem | gausslemma2dlem4 15389* | Lemma 4 for gausslemma2d 15394. (Contributed by AV, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | ||
| Theorem | gausslemma2dlem5a 15390* | Lemma for gausslemma2dlem5 15391. (Contributed by AV, 8-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem5 15391* | Lemma 5 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem6 15392* | Lemma 6 for gausslemma2d 15394. (Contributed by AV, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem7 15393* | Lemma 7 for gausslemma2d 15394. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) | ||
| Theorem | gausslemma2d 15394* | Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (2 /L 𝑃) = (-1↑𝑁)) | ||
| Theorem | lgseisenlem1 15395* | Lemma for lgseisen 15399. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢 ≤ 𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2))) | ||
| Theorem | lgseisenlem2 15396* | Lemma for lgseisen 15399. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))) | ||
| Theorem | lgseisenlem3 15397* | Lemma for lgseisen 15399. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) | ||
| Theorem | lgseisenlem4 15398* | Lemma for lgseisen 15399. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) | ||
| Theorem | lgseisen 15399* | Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | ||
| Theorem | lgsquadlemsfi 15400* | Lemma for lgsquad 15405. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |