| Intuitionistic Logic Explorer Theorem List (p. 154 of 158)  | < Previous Next > | |
| Bad symbols? Try the
 GIF version.  | 
||
| 
 Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List  | 
||
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem1f1o 15301* | Lemma for gausslemma2dlem1 15302. (Contributed by Jim Kingdon, 9-Aug-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem1 15302* | Lemma 1 for gausslemma2d 15310. (Contributed by AV, 5-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem2 15303* | Lemma 2 for gausslemma2d 15310. (Contributed by AV, 4-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem3 15304* | Lemma 3 for gausslemma2d 15310. (Contributed by AV, 4-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem4 15305* | Lemma 4 for gausslemma2d 15310. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem5a 15306* | Lemma for gausslemma2dlem5 15307. (Contributed by AV, 8-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem5 15307* | Lemma 5 for gausslemma2d 15310. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem6 15308* | Lemma 6 for gausslemma2d 15310. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem7 15309* | Lemma 7 for gausslemma2d 15310. (Contributed by AV, 13-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2d 15310* | Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (2 /L 𝑃) = (-1↑𝑁)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem1 15311* | Lemma for lgseisen 15315. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢 ≤ 𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem2 15312* | Lemma for lgseisen 15315. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem3 15313* | Lemma for lgseisen 15315. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem4 15314* | Lemma for lgseisen 15315. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgseisen 15315* | Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlemsfi 15316* | Lemma for lgsquad 15321. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlemofi 15317* | Lemma for lgsquad 15321. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)} ∈ Fin) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem1 15318* | Lemma for lgsquad 15321. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)}))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem2 15319* | Lemma for lgsquad 15321. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 15318 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem3 15320* | Lemma for lgsquad 15321. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad 15321 | The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2lem1 15322 | Lemma for lgsquad2 15324. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 𝑀) & ⊢ (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2lem2 15323* | Lemma for lgsquad2 15324. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2 15324 | Extend lgsquad 15321 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad3 15325 | Extend lgsquad2 15324 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | m1lgs 15326 | The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a1 15327* | Lemma 1 for 2lgslem1a 15329. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a2 15328 | Lemma 2 for 2lgslem1a 15329. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a 15329* | Lemma 1 for 2lgslem1 15332. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1b 15330* | Lemma 2 for 2lgslem1 15332. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝐼 = (𝐴...𝐵) & ⊢ 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2)) ⇒ ⊢ 𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1c 15331 | Lemma 3 for 2lgslem1 15332. (Contributed by AV, 19-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1 15332* | Lemma 1 for 2lgs 15345. (Contributed by AV, 19-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem2 15333 | Lemma 2 for 2lgs 15345. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3a 15334 | Lemma for 2lgslem3a1 15338. (Contributed by AV, 14-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3b 15335 | Lemma for 2lgslem3b1 15339. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3c 15336 | Lemma for 2lgslem3c1 15340. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3d 15337 | Lemma for 2lgslem3d1 15341. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3a1 15338 | Lemma 1 for 2lgslem3 15342. (Contributed by AV, 15-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3b1 15339 | Lemma 2 for 2lgslem3 15342. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3c1 15340 | Lemma 3 for 2lgslem3 15342. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3d1 15341 | Lemma 4 for 2lgslem3 15342. (Contributed by AV, 15-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3 15342 | Lemma 3 for 2lgs 15345. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgs2 15343 | The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 /L 2) = 0 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem4 15344 | Lemma 4 for 2lgs 15345: special case of 2lgs 15345 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgs 15345 | The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 15258) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem1 15346 | Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem2 15347 | Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3a 15348 | Lemma 1 for 2lgsoddprmlem3 15352. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((1↑2) − 1) / 8) = 0 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3b 15349 | Lemma 2 for 2lgsoddprmlem3 15352. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((3↑2) − 1) / 8) = 1 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3c 15350 | Lemma 3 for 2lgsoddprmlem3 15352. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((5↑2) − 1) / 8) = 3 | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3d 15351 | Lemma 4 for 2lgsoddprmlem3 15352. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (((7↑2) − 1) / 8) = (2 · 3) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3 15352 | Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem4 15353 | Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7})) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprm 15354 | The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem1 15355* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem2 15356* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | mul2sq 15357 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem3 15358 | Lemma for 2sqlem5 15360. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) & ⊢ (𝜑 → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem4 15359 | Lemma for 2sqlem5 15360. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem5 15360 | Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) & ⊢ (𝜑 → 𝑃 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem6 15361* | Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐵 → 𝑝 ∈ 𝑆)) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem7 15362* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ 𝑌 ⊆ (𝑆 ∩ ℕ) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem8a 15363* | Lemma for 2sqlem8 15364. (Contributed by Mario Carneiro, 4-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem8 15364* | Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐸 = (𝐶 / (𝐶 gcd 𝐷)) & ⊢ 𝐹 = (𝐷 / (𝐶 gcd 𝐷)) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem9 15365* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem10 15366* | Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following: 
  | ||||||||||||||||||||||||||||||||||||||
| Theorem | conventions 15367 | 
Unless there is a reason to diverge, we follow the conventions of the
       Metamath Proof Explorer (MPE, set.mm).  This list of conventions is
       intended to be read in conjunction with the corresponding conventions in
       the Metamath Proof Explorer, and only the differences are described
       below.
       
       
 Label naming conventions Here are a few of the label naming conventions: 
 
 
 The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems. 
 
 
 (Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.)  | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-or 15368 | Example for ax-io 710. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 3 ∨ 4 = 4) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-an 15369 | Example for ax-ia1 106. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (2 = 2 ∧ 3 = 3) | ||||||||||||||||||||||||||||||||||||||
| Theorem | 1kp2ke3k 15370 | 
Example for df-dec 9458, 1000 + 2000 = 3000.
 This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 9458 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.)  | ||||||||||||||||||||||||||||||||||||
| ⊢ (;;;1000 + ;;;2000) = ;;;3000 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fl 15371 | Example for df-fl 10360. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-ceil 15372 | Example for df-ceil 10361. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-exp 15373 | Example for df-exp 10631. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-fac 15374 | Example for df-fac 10818. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (!‘5) = ;;120 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-bc 15375 | Example for df-bc 10840. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (5C3) = ;10 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-dvds 15376 | Example for df-dvds 11953: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||||||||||||||
| ⊢ 3 ∥ 6 | ||||||||||||||||||||||||||||||||||||||
| Theorem | ex-gcd 15377 | Example for df-gcd 12121. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (-6 gcd 9) = 3 | ||||||||||||||||||||||||||||||||||||||
| Theorem | mathbox 15378 | 
(This theorem is a dummy placeholder for these guidelines.  The label
       of this theorem, "mathbox", is hard-coded into the Metamath
program to
       identify the start of the mathbox section for web page generation.)
 A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.)  | ||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnsn 15379 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnor 15380 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnim 15381 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnan 15382 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnclavius 15383 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((¬ 𝜑 → 𝜑) → ¬ ¬ 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-imnimnn 15384 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 15383 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝜓) & ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ ¬ ¬ 𝜓 | ||||||||||||||||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 15386 or bj-stfal 15388 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest.  | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trst 15385 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-sttru 15386 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fast 15387 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stfal 15388 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ STAB ⊥ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnst 15389 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 15636 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ¬ ¬ STAB 𝜑 | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbist 15390 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 15403). (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stst 15391 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stim 15392 | A conjunction with a stable consequent is stable. See stabnot 834 for negation , bj-stan 15393 for conjunction , and bj-stal 15395 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜓 → STAB (𝜑 → 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stan 15393 | The conjunction of two stable formulas is stable. See bj-stim 15392 for implication, stabnot 834 for negation, and bj-stal 15395 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stand 15394 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 15393. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 15393 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → STAB 𝜓) & ⊢ (𝜑 → STAB 𝜒) ⇒ ⊢ (𝜑 → STAB (𝜓 ∧ 𝜒)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-stal 15395 | The universal quantification of a stable formula is stable. See bj-stim 15392 for implication, stabnot 834 for negation, and bj-stan 15393 for conjunction. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥STAB 𝜑 → STAB ∀𝑥𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-pm2.18st 15396 | Clavius law for stable formulas. See pm2.18dc 856. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜑) → 𝜑)) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-con1st 15397 | Contraposition when the antecedent is a negated stable proposition. See con1dc 857. (Contributed by BJ, 11-Nov-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trdc 15398 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-dctru 15399 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| ⊢ DECID ⊤ | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-fadc 15400 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| ⊢ (¬ 𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||||||||||||||
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |