HomeHome Intuitionistic Logic Explorer
Theorem List (p. 154 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15301-15400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlimcdifap 15301* It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)       (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ {𝑥𝐴𝑥 # 𝐵}) lim 𝐵))
 
Theoremlimcmpted 15302* Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)       (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
 
Theoremlimcimolemlt 15303* Lemma for limcimo 15304. (Contributed by Jim Kingdon, 3-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑋 ∈ (𝐹 lim 𝐵))    &   (𝜑𝑌 ∈ (𝐹 lim 𝐵))    &   (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))       (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
 
Theoremlimcimo 15304* Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
 
Theoremlimcresi 15305 Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
 
Theoremcnplimcim 15306 If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnplimclemle 15307 Lemma for cnplimccntop 15309. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑍𝐴)    &   ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))    &   (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)       (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
 
Theoremcnplimclemr 15308 Lemma for cnplimccntop 15309. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))       (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
Theoremcnplimccntop 15309 A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnlimcim 15310* If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimc 15311* 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimci 15312 If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑𝐹 ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
 
Theoremcnmptlimc 15313* If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)    &   (𝑥 = 𝐵𝑋 = 𝑌)       (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
 
Theoremlimccnpcntop 15314 If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
(𝜑𝐹:𝐴𝐷)    &   (𝜑𝐷 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐷)    &   (𝜑𝐶 ∈ (𝐹 lim 𝐵))    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))       (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
 
Theoremlimccnp2lem 15315* Lemma for limccnp2cntop 15316. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))    &   𝑥𝜑    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐿 ∈ ℝ+)    &   (𝜑 → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))       (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
 
Theoremlimccnp2cntop 15316* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))       (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
 
Theoremlimccoap 15317* Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})    &   ((𝜑𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}) → 𝑆 ∈ ℂ)    &   (𝜑𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋))    &   (𝜑𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋))
 
Theoremreldvg 15318 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
 
Theoremdvlemap 15319* Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝐹:𝐷⟶ℂ)    &   (𝜑𝐷 ⊆ ℂ)    &   (𝜑𝐵𝐷)       ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
 
Theoremdvfvalap 15320* Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
 
Theoremeldvap 15321* The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
 
Theoremdvcl 15322 The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       ((𝜑𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ)
 
Theoremdvbssntrcntop 15323 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))
 
Theoremdvbss 15324 The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
 
Theoremdvbsssg 15325 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆)
 
Theoremrecnprss 15326 Both and are subsets of . (Contributed by Mario Carneiro, 10-Feb-2015.)
(𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
 
Theoremdvfgg 15327 Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and . (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
 
Theoremdvfpm 15328 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
 
Theoremdvfcnpm 15329 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
 
Theoremdvidlemap 15330* Lemma for dvid 15334 and dvconst 15333. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝜑𝐹:ℂ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
 
Theoremdvidrelem 15331* Lemma for dvidre 15336 and dvconstre 15335. Analogue of dvidlemap 15330 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵}))
 
Theoremdvidsslem 15332* Lemma for dvconstss 15337. Analogue of dvidlemap 15330 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝐽)    &   ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
 
Theoremdvconst 15333 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
 
Theoremdvid 15334 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(ℂ D ( I ↾ ℂ)) = (ℂ × {1})
 
Theoremdvconstre 15335 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝐴 ∈ ℂ → (ℝ D (ℝ × {𝐴})) = (ℝ × {0}))
 
Theoremdvidre 15336 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
(ℝ D ( I ↾ ℝ)) = (ℝ × {1})
 
Theoremdvconstss 15337 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝑋𝐽)    &   (𝜑𝐴 ∈ ℂ)       (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
 
Theoremdvcnp2cntop 15338 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
𝐽 = (𝐾t 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
Theoremdvcn 15339 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
(((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴cn→ℂ))
 
Theoremdvaddxxbr 15340 The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
 
Theoremdvmulxxbr 15341 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 15343. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
 
Theoremdvaddxx 15342 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15340. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))
 
Theoremdvmulxx 15343 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15341. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
 
Theoremdviaddf 15344 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑 → dom (𝑆 D 𝐹) = 𝑋)    &   (𝜑 → dom (𝑆 D 𝐺) = 𝑋)       (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
 
Theoremdvimulf 15345 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑 → dom (𝑆 D 𝐹) = 𝑋)    &   (𝜑 → dom (𝑆 D 𝐺) = 𝑋)       (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))
 
Theoremdvcoapbr 15346* The chain rule for derivatives at a point. The 𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶) hypothesis constrains what functions work for 𝐺. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑌𝑋)    &   (𝜑𝑌𝑇)    &   (𝜑 → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑇 ⊆ ℂ)    &   (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑇 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
 
Theoremdvcjbr 15347 The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15348. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋 ⊆ ℝ)    &   (𝜑𝐶 ∈ dom (ℝ D 𝐹))       (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
 
Theoremdvcj 15348 The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 15347. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
 
Theoremdvfre 15349 The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
 
Theoremdvexp 15350* Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
 
Theoremdvexp2 15351* Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
 
Theoremdvrecap 15352* Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
(𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
 
Theoremdvmptidcn 15353 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)
 
Theoremdvmptccn 15354* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
 
Theoremdvmptid 15355* Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})       (𝜑 → (𝑆 D (𝑥𝑆𝑥)) = (𝑥𝑆 ↦ 1))
 
Theoremdvmptc 15356* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐴 ∈ ℂ)       (𝜑 → (𝑆 D (𝑥𝑆𝐴)) = (𝑥𝑆 ↦ 0))
 
Theoremdvmptclx 15357* Closure lemma for dvmptmulx 15359 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)       ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
 
Theoremdvmptaddx 15358* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
 
Theoremdvmptmulx 15359* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
 
Theoremdvmptcmulcn 15360* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵)))
 
Theoremdvmptnegcn 15361* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵))
 
Theoremdvmptsubcn 15362* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐷𝑊)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵𝐷)))
 
Theoremdvmptcjx 15363* Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋 ⊆ ℝ)       (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
 
Theoremdvmptfsum 15364* Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
𝐽 = (𝐾t 𝑆)    &   𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝐽)    &   (𝜑𝐼 ∈ Fin)    &   ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)    &   ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
 
Theoremdveflem 15365 Derivative of the exponential function at 0. The key step in the proof is eftlub 12167, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
0(ℂ D exp)1
 
Theoremdvef 15366 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
(ℂ D exp) = exp
 
PART 11  BASIC REAL AND COMPLEX FUNCTIONS
 
11.1  Polynomials
 
11.1.1  Elementary properties of complex polynomials
 
Syntaxcply 15367 Extend class notation to include the set of complex polynomials.
class Poly
 
Syntaxcidp 15368 Extend class notation to include the identity polynomial.
class Xp
 
Definitiondf-ply 15369* Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Definitiondf-idp 15370 Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Xp = ( I ↾ ℂ)
 
Theoremplyval 15371* Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Theoremplybss 15372 Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
 
Theoremelply 15373* Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
 
Theoremelply2 15374* The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
 
Theoremplyun0 15375 The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
(Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
 
Theoremplyf 15376 A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
 
Theoremplyss 15377 The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
 
Theoremplyssc 15378 Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
(Poly‘𝑆) ⊆ (Poly‘ℂ)
 
Theoremelplyr 15379* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremelplyd 15380* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremply1termlem 15381* Lemma for ply1term 15382. (Contributed by Mario Carneiro, 26-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
 
Theoremply1term 15382* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
 
Theoremplypow 15383* A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧𝑁)) ∈ (Poly‘𝑆))
 
Theoremplyconst 15384 A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆))
 
Theoremplyid 15385 The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆))
 
Theoremplyaddlem1 15386* Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
 
Theoremplymullem1 15387* Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
 
Theoremplyaddlem 15388* Lemma for plyadd 15390. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymullem 15389* Lemma for plymul 15391. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplyadd 15390* The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymul 15391* The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplysub 15392* The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑 → -1 ∈ 𝑆)       (𝜑 → (𝐹𝑓𝐺) ∈ (Poly‘𝑆))
 
Theoremplyaddcl 15393 The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + 𝐺) ∈ (Poly‘ℂ))
 
Theoremplymulcl 15394 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
 
Theoremplysubcl 15395 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓𝐺) ∈ (Poly‘ℂ))
 
Theoremplycoeid3 15396* Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
(𝜑𝐷 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝑀 ∈ (ℤ𝐷))    &   (𝜑𝑋 ∈ ℂ)       (𝜑 → (𝐹𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗)))
 
Theoremplycolemc 15397* Lemma for plyco 15398. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
 
Theoremplyco 15398* The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
 
Theoremplycjlemc 15399* Lemma for plycj 15400. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
(𝜑𝑁 ∈ ℕ0)    &   𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
 
Theoremplycj 15400* The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 ∈ (Poly‘𝑆))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >