Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatws1f1olast Structured version   Visualization version   GIF version

Theorem ccatws1f1olast 32922
Description: Two ways to reorder symbols in a word 𝑊 according to permutation 𝑇, and add a last symbol 𝑋. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
ccatws1f1olast.1 𝑁 = (♯‘𝑊)
ccatws1f1olast.3 (𝜑𝑊 ∈ Word 𝑆)
ccatws1f1olast.4 (𝜑𝑋𝑆)
ccatws1f1olast.5 (𝜑𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁))
Assertion
Ref Expression
ccatws1f1olast (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = ((𝑊𝑇) ++ ⟨“𝑋”⟩))

Proof of Theorem ccatws1f1olast
StepHypRef Expression
1 ccatws1f1olast.1 . . . . . . 7 𝑁 = (♯‘𝑊)
2 ccatws1f1olast.3 . . . . . . . 8 (𝜑𝑊 ∈ Word 𝑆)
3 lencl 14568 . . . . . . . 8 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℕ0)
51, 4eqeltrid 2843 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6 fzossfzop1 13779 . . . . . 6 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
75, 6syl 17 . . . . 5 (𝜑 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
8 sswrd 14557 . . . . 5 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → Word (0..^𝑁) ⊆ Word (0..^(𝑁 + 1)))
97, 8syl 17 . . . 4 (𝜑 → Word (0..^𝑁) ⊆ Word (0..^(𝑁 + 1)))
10 ccatws1f1olast.5 . . . . . 6 (𝜑𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁))
11 f1of 6849 . . . . . 6 (𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁) → 𝑇:(0..^𝑁)⟶(0..^𝑁))
1210, 11syl 17 . . . . 5 (𝜑𝑇:(0..^𝑁)⟶(0..^𝑁))
13 iswrdi 14553 . . . . 5 (𝑇:(0..^𝑁)⟶(0..^𝑁) → 𝑇 ∈ Word (0..^𝑁))
1412, 13syl 17 . . . 4 (𝜑𝑇 ∈ Word (0..^𝑁))
159, 14sseldd 3996 . . 3 (𝜑𝑇 ∈ Word (0..^(𝑁 + 1)))
16 fzonn0p1 13778 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
175, 16syl 17 . . . 4 (𝜑𝑁 ∈ (0..^(𝑁 + 1)))
1817s1cld 14638 . . 3 (𝜑 → ⟨“𝑁”⟩ ∈ Word (0..^(𝑁 + 1)))
191oveq1i 7441 . . . . 5 (𝑁 + 1) = ((♯‘𝑊) + 1)
20 ccatws1len 14655 . . . . . 6 (𝑊 ∈ Word 𝑆 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
212, 20syl 17 . . . . 5 (𝜑 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
2219, 21eqtr4id 2794 . . . 4 (𝜑 → (𝑁 + 1) = (♯‘(𝑊 ++ ⟨“𝑋”⟩)))
23 ccatws1f1olast.4 . . . . 5 (𝜑𝑋𝑆)
24 ccatws1cl 14651 . . . . 5 ((𝑊 ∈ Word 𝑆𝑋𝑆) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑆)
252, 23, 24syl2anc 584 . . . 4 (𝜑 → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑆)
2622, 25wrdfd 32903 . . 3 (𝜑 → (𝑊 ++ ⟨“𝑋”⟩):(0..^(𝑁 + 1))⟶𝑆)
27 ccatco 14871 . . 3 ((𝑇 ∈ Word (0..^(𝑁 + 1)) ∧ ⟨“𝑁”⟩ ∈ Word (0..^(𝑁 + 1)) ∧ (𝑊 ++ ⟨“𝑋”⟩):(0..^(𝑁 + 1))⟶𝑆) → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = (((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) ++ ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩)))
2815, 18, 26, 27syl3anc 1370 . 2 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = (((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) ++ ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩)))
2912frnd 6745 . . . . 5 (𝜑 → ran 𝑇 ⊆ (0..^𝑁))
30 cores 6271 . . . . 5 (ran 𝑇 ⊆ (0..^𝑁) → (((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) ∘ 𝑇) = ((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇))
3129, 30syl 17 . . . 4 (𝜑 → (((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) ∘ 𝑇) = ((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇))
321a1i 11 . . . . . . 7 (𝜑𝑁 = (♯‘𝑊))
3332oveq2d 7447 . . . . . 6 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) prefix 𝑁) = ((𝑊 ++ ⟨“𝑋”⟩) prefix (♯‘𝑊)))
34 fzossfz 13715 . . . . . . . . . 10 (0..^(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
3519a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) = ((♯‘𝑊) + 1))
3635oveq2d 7447 . . . . . . . . . 10 (𝜑 → (0...(𝑁 + 1)) = (0...((♯‘𝑊) + 1)))
3734, 36sseqtrid 4048 . . . . . . . . 9 (𝜑 → (0..^(𝑁 + 1)) ⊆ (0...((♯‘𝑊) + 1)))
3837, 17sseldd 3996 . . . . . . . 8 (𝜑𝑁 ∈ (0...((♯‘𝑊) + 1)))
3921oveq2d 7447 . . . . . . . 8 (𝜑 → (0...(♯‘(𝑊 ++ ⟨“𝑋”⟩))) = (0...((♯‘𝑊) + 1)))
4038, 39eleqtrrd 2842 . . . . . . 7 (𝜑𝑁 ∈ (0...(♯‘(𝑊 ++ ⟨“𝑋”⟩))))
41 pfxres 14714 . . . . . . 7 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑆𝑁 ∈ (0...(♯‘(𝑊 ++ ⟨“𝑋”⟩)))) → ((𝑊 ++ ⟨“𝑋”⟩) prefix 𝑁) = ((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)))
4225, 40, 41syl2anc 584 . . . . . 6 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) prefix 𝑁) = ((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)))
4323s1cld 14638 . . . . . . 7 (𝜑 → ⟨“𝑋”⟩ ∈ Word 𝑆)
44 pfxccat1 14737 . . . . . . 7 ((𝑊 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ((𝑊 ++ ⟨“𝑋”⟩) prefix (♯‘𝑊)) = 𝑊)
452, 43, 44syl2anc 584 . . . . . 6 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) prefix (♯‘𝑊)) = 𝑊)
4633, 42, 453eqtr3d 2783 . . . . 5 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) = 𝑊)
4746coeq1d 5875 . . . 4 (𝜑 → (((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) ∘ 𝑇) = (𝑊𝑇))
4831, 47eqtr3d 2777 . . 3 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) = (𝑊𝑇))
49 s1co 14869 . . . . 5 ((𝑁 ∈ (0..^(𝑁 + 1)) ∧ (𝑊 ++ ⟨“𝑋”⟩):(0..^(𝑁 + 1))⟶𝑆) → ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩) = ⟨“((𝑊 ++ ⟨“𝑋”⟩)‘𝑁)”⟩)
5017, 26, 49syl2anc 584 . . . 4 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩) = ⟨“((𝑊 ++ ⟨“𝑋”⟩)‘𝑁)”⟩)
51 ccats1val2 14662 . . . . . 6 ((𝑊 ∈ Word 𝑆𝑋𝑆𝑁 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
522, 23, 32, 51syl3anc 1370 . . . . 5 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
5352s1eqd 14636 . . . 4 (𝜑 → ⟨“((𝑊 ++ ⟨“𝑋”⟩)‘𝑁)”⟩ = ⟨“𝑋”⟩)
5450, 53eqtrd 2775 . . 3 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩) = ⟨“𝑋”⟩)
5548, 54oveq12d 7449 . 2 (𝜑 → (((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) ++ ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩)) = ((𝑊𝑇) ++ ⟨“𝑋”⟩))
5628, 55eqtrd 2775 1 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = ((𝑊𝑇) ++ ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  ran crn 5690  cres 5691  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  0cn0 12524  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630   prefix cpfx 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706
This theorem is referenced by:  1arithidomlem2  33544
  Copyright terms: Public domain W3C validator