Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatws1f1olast Structured version   Visualization version   GIF version

Theorem ccatws1f1olast 32928
Description: Two ways to reorder symbols in a word 𝑊 according to permutation 𝑇, and add a last symbol 𝑋. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
ccatws1f1olast.1 𝑁 = (♯‘𝑊)
ccatws1f1olast.3 (𝜑𝑊 ∈ Word 𝑆)
ccatws1f1olast.4 (𝜑𝑋𝑆)
ccatws1f1olast.5 (𝜑𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁))
Assertion
Ref Expression
ccatws1f1olast (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = ((𝑊𝑇) ++ ⟨“𝑋”⟩))

Proof of Theorem ccatws1f1olast
StepHypRef Expression
1 ccatws1f1olast.1 . . . . . . 7 𝑁 = (♯‘𝑊)
2 ccatws1f1olast.3 . . . . . . . 8 (𝜑𝑊 ∈ Word 𝑆)
3 lencl 14551 . . . . . . . 8 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ ℕ0)
51, 4eqeltrid 2838 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6 fzossfzop1 13759 . . . . . 6 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
75, 6syl 17 . . . . 5 (𝜑 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
8 sswrd 14540 . . . . 5 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → Word (0..^𝑁) ⊆ Word (0..^(𝑁 + 1)))
97, 8syl 17 . . . 4 (𝜑 → Word (0..^𝑁) ⊆ Word (0..^(𝑁 + 1)))
10 ccatws1f1olast.5 . . . . . 6 (𝜑𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁))
11 f1of 6818 . . . . . 6 (𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁) → 𝑇:(0..^𝑁)⟶(0..^𝑁))
1210, 11syl 17 . . . . 5 (𝜑𝑇:(0..^𝑁)⟶(0..^𝑁))
13 iswrdi 14535 . . . . 5 (𝑇:(0..^𝑁)⟶(0..^𝑁) → 𝑇 ∈ Word (0..^𝑁))
1412, 13syl 17 . . . 4 (𝜑𝑇 ∈ Word (0..^𝑁))
159, 14sseldd 3959 . . 3 (𝜑𝑇 ∈ Word (0..^(𝑁 + 1)))
16 fzonn0p1 13758 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
175, 16syl 17 . . . 4 (𝜑𝑁 ∈ (0..^(𝑁 + 1)))
1817s1cld 14621 . . 3 (𝜑 → ⟨“𝑁”⟩ ∈ Word (0..^(𝑁 + 1)))
191oveq1i 7415 . . . . 5 (𝑁 + 1) = ((♯‘𝑊) + 1)
20 ccatws1len 14638 . . . . . 6 (𝑊 ∈ Word 𝑆 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
212, 20syl 17 . . . . 5 (𝜑 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
2219, 21eqtr4id 2789 . . . 4 (𝜑 → (𝑁 + 1) = (♯‘(𝑊 ++ ⟨“𝑋”⟩)))
23 ccatws1f1olast.4 . . . . 5 (𝜑𝑋𝑆)
24 ccatws1cl 14634 . . . . 5 ((𝑊 ∈ Word 𝑆𝑋𝑆) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑆)
252, 23, 24syl2anc 584 . . . 4 (𝜑 → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑆)
2622, 25wrdfd 14537 . . 3 (𝜑 → (𝑊 ++ ⟨“𝑋”⟩):(0..^(𝑁 + 1))⟶𝑆)
27 ccatco 14854 . . 3 ((𝑇 ∈ Word (0..^(𝑁 + 1)) ∧ ⟨“𝑁”⟩ ∈ Word (0..^(𝑁 + 1)) ∧ (𝑊 ++ ⟨“𝑋”⟩):(0..^(𝑁 + 1))⟶𝑆) → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = (((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) ++ ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩)))
2815, 18, 26, 27syl3anc 1373 . 2 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = (((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) ++ ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩)))
2912frnd 6714 . . . . 5 (𝜑 → ran 𝑇 ⊆ (0..^𝑁))
30 cores 6238 . . . . 5 (ran 𝑇 ⊆ (0..^𝑁) → (((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) ∘ 𝑇) = ((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇))
3129, 30syl 17 . . . 4 (𝜑 → (((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) ∘ 𝑇) = ((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇))
321a1i 11 . . . . . . 7 (𝜑𝑁 = (♯‘𝑊))
3332oveq2d 7421 . . . . . 6 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) prefix 𝑁) = ((𝑊 ++ ⟨“𝑋”⟩) prefix (♯‘𝑊)))
34 fzossfz 13695 . . . . . . . . . 10 (0..^(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
3519a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) = ((♯‘𝑊) + 1))
3635oveq2d 7421 . . . . . . . . . 10 (𝜑 → (0...(𝑁 + 1)) = (0...((♯‘𝑊) + 1)))
3734, 36sseqtrid 4001 . . . . . . . . 9 (𝜑 → (0..^(𝑁 + 1)) ⊆ (0...((♯‘𝑊) + 1)))
3837, 17sseldd 3959 . . . . . . . 8 (𝜑𝑁 ∈ (0...((♯‘𝑊) + 1)))
3921oveq2d 7421 . . . . . . . 8 (𝜑 → (0...(♯‘(𝑊 ++ ⟨“𝑋”⟩))) = (0...((♯‘𝑊) + 1)))
4038, 39eleqtrrd 2837 . . . . . . 7 (𝜑𝑁 ∈ (0...(♯‘(𝑊 ++ ⟨“𝑋”⟩))))
41 pfxres 14697 . . . . . . 7 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑆𝑁 ∈ (0...(♯‘(𝑊 ++ ⟨“𝑋”⟩)))) → ((𝑊 ++ ⟨“𝑋”⟩) prefix 𝑁) = ((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)))
4225, 40, 41syl2anc 584 . . . . . 6 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) prefix 𝑁) = ((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)))
4323s1cld 14621 . . . . . . 7 (𝜑 → ⟨“𝑋”⟩ ∈ Word 𝑆)
44 pfxccat1 14720 . . . . . . 7 ((𝑊 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ((𝑊 ++ ⟨“𝑋”⟩) prefix (♯‘𝑊)) = 𝑊)
452, 43, 44syl2anc 584 . . . . . 6 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) prefix (♯‘𝑊)) = 𝑊)
4633, 42, 453eqtr3d 2778 . . . . 5 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) = 𝑊)
4746coeq1d 5841 . . . 4 (𝜑 → (((𝑊 ++ ⟨“𝑋”⟩) ↾ (0..^𝑁)) ∘ 𝑇) = (𝑊𝑇))
4831, 47eqtr3d 2772 . . 3 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) = (𝑊𝑇))
49 s1co 14852 . . . . 5 ((𝑁 ∈ (0..^(𝑁 + 1)) ∧ (𝑊 ++ ⟨“𝑋”⟩):(0..^(𝑁 + 1))⟶𝑆) → ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩) = ⟨“((𝑊 ++ ⟨“𝑋”⟩)‘𝑁)”⟩)
5017, 26, 49syl2anc 584 . . . 4 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩) = ⟨“((𝑊 ++ ⟨“𝑋”⟩)‘𝑁)”⟩)
51 ccats1val2 14645 . . . . . 6 ((𝑊 ∈ Word 𝑆𝑋𝑆𝑁 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
522, 23, 32, 51syl3anc 1373 . . . . 5 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = 𝑋)
5352s1eqd 14619 . . . 4 (𝜑 → ⟨“((𝑊 ++ ⟨“𝑋”⟩)‘𝑁)”⟩ = ⟨“𝑋”⟩)
5450, 53eqtrd 2770 . . 3 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩) = ⟨“𝑋”⟩)
5548, 54oveq12d 7423 . 2 (𝜑 → (((𝑊 ++ ⟨“𝑋”⟩) ∘ 𝑇) ++ ((𝑊 ++ ⟨“𝑋”⟩) ∘ ⟨“𝑁”⟩)) = ((𝑊𝑇) ++ ⟨“𝑋”⟩))
5628, 55eqtrd 2770 1 (𝜑 → ((𝑊 ++ ⟨“𝑋”⟩) ∘ (𝑇 ++ ⟨“𝑁”⟩)) = ((𝑊𝑇) ++ ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926  ran crn 5655  cres 5656  ccom 5658  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  0cn0 12501  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   ++ cconcat 14588  ⟨“cs1 14613   prefix cpfx 14688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689
This theorem is referenced by:  1arithidomlem2  33551
  Copyright terms: Public domain W3C validator