| Step | Hyp | Ref
| Expression |
| 1 | | chnpof1.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ( < Chain 𝐴)) |
| 2 | | chnf 18527 |
. . . 4
⊢ (𝐵 ∈ ( < Chain 𝐴) → 𝐵:(0..^(♯‘𝐵))⟶𝐴) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))⟶𝐴) |
| 4 | | chnpof1.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → < Po 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → < Po 𝐴) |
| 6 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → < Po 𝐴) |
| 7 | 1 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐵))) → 𝐵 ∈ ( < Chain 𝐴)) |
| 8 | 7, 2 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐵))) → 𝐵:(0..^(♯‘𝐵))⟶𝐴) |
| 9 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐵))) → 𝑖 ∈ (0..^(♯‘𝐵))) |
| 10 | | ffvelcdm 7009 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵:(0..^(♯‘𝐵))⟶𝐴 ∧ 𝑖 ∈ (0..^(♯‘𝐵))) → (𝐵‘𝑖) ∈ 𝐴) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐵))) → (𝐵‘𝑖) ∈ 𝐴) |
| 12 | 11 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → (𝐵‘𝑖) ∈ 𝐴) |
| 13 | 3 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → 𝐵:(0..^(♯‘𝐵))⟶𝐴) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈
(0..^(♯‘𝐵))
∧ 𝑗 ∈
(0..^(♯‘𝐵)))
→ 𝑗 ∈
(0..^(♯‘𝐵))) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → 𝑗 ∈ (0..^(♯‘𝐵))) |
| 16 | | ffvelcdm 7009 |
. . . . . . . . . . . . . 14
⊢ ((𝐵:(0..^(♯‘𝐵))⟶𝐴 ∧ 𝑗 ∈ (0..^(♯‘𝐵))) → (𝐵‘𝑗) ∈ 𝐴) |
| 17 | 13, 15, 16 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → (𝐵‘𝑗) ∈ 𝐴) |
| 18 | 12, 17 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → ((𝐵‘𝑖) ∈ 𝐴 ∧ (𝐵‘𝑗) ∈ 𝐴)) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → ((𝐵‘𝑖) ∈ 𝐴 ∧ (𝐵‘𝑗) ∈ 𝐴)) |
| 20 | 1 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → 𝐵 ∈ ( < Chain 𝐴)) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝐵 ∈ ( < Chain 𝐴)) |
| 22 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0..^(♯‘𝐵))) |
| 23 | | simplrl 776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^(♯‘𝐵))) |
| 24 | | elfzonn0 13599 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(0..^(♯‘𝐵))
→ 𝑖 ∈
ℕ0) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝑖 ∈ ℕ0) |
| 26 | | elfzoelz 13551 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(0..^(♯‘𝐵))
→ 𝑗 ∈
ℤ) |
| 27 | 22, 26 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ) |
| 28 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
| 29 | 25, 27, 28 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → (𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗)) |
| 30 | | elfzo0z 13593 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑗) ↔ (𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ∧ 𝑖 < 𝑗)) |
| 31 | 29, 30 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0..^𝑗)) |
| 32 | 6, 21, 22, 31 | chnlt 18521 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → (𝐵‘𝑖) < (𝐵‘𝑗)) |
| 33 | | po2ne 5538 |
. . . . . . . . . . 11
⊢ (( < Po 𝐴 ∧ ((𝐵‘𝑖) ∈ 𝐴 ∧ (𝐵‘𝑗) ∈ 𝐴) ∧ (𝐵‘𝑖) < (𝐵‘𝑗)) → (𝐵‘𝑖) ≠ (𝐵‘𝑗)) |
| 34 | 6, 19, 32, 33 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → (𝐵‘𝑖) ≠ (𝐵‘𝑗)) |
| 35 | 34 | neneqd 2931 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑖 < 𝑗) → ¬ (𝐵‘𝑖) = (𝐵‘𝑗)) |
| 36 | 35 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → (𝑖 < 𝑗 → ¬ (𝐵‘𝑖) = (𝐵‘𝑗))) |
| 37 | 36 | con2d 134 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → ((𝐵‘𝑖) = (𝐵‘𝑗) → ¬ 𝑖 < 𝑗)) |
| 38 | 37 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ (𝐵‘𝑖) = (𝐵‘𝑗)) → ¬ 𝑖 < 𝑗) |
| 39 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → < Po 𝐴) |
| 40 | 17, 12 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → ((𝐵‘𝑗) ∈ 𝐴 ∧ (𝐵‘𝑖) ∈ 𝐴)) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → ((𝐵‘𝑗) ∈ 𝐴 ∧ (𝐵‘𝑖) ∈ 𝐴)) |
| 42 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝐵 ∈ ( < Chain 𝐴)) |
| 43 | | simplrl 776 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0..^(♯‘𝐵))) |
| 44 | | simplrr 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^(♯‘𝐵))) |
| 45 | | elfzonn0 13599 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(0..^(♯‘𝐵))
→ 𝑗 ∈
ℕ0) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝑗 ∈ ℕ0) |
| 47 | | elfzoelz 13551 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(0..^(♯‘𝐵))
→ 𝑖 ∈
ℤ) |
| 48 | 43, 47 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝑖 ∈ ℤ) |
| 49 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖) |
| 50 | 46, 48, 49 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → (𝑗 ∈ ℕ0 ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖)) |
| 51 | | elfzo0z 13593 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0..^𝑖) ↔ (𝑗 ∈ ℕ0 ∧ 𝑖 ∈ ℤ ∧ 𝑗 < 𝑖)) |
| 52 | 50, 51 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0..^𝑖)) |
| 53 | 39, 42, 43, 52 | chnlt 18521 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → (𝐵‘𝑗) < (𝐵‘𝑖)) |
| 54 | | po2ne 5538 |
. . . . . . . . . . . 12
⊢ (( < Po 𝐴 ∧ ((𝐵‘𝑗) ∈ 𝐴 ∧ (𝐵‘𝑖) ∈ 𝐴) ∧ (𝐵‘𝑗) < (𝐵‘𝑖)) → (𝐵‘𝑗) ≠ (𝐵‘𝑖)) |
| 55 | 54 | necomd 2981 |
. . . . . . . . . . 11
⊢ (( < Po 𝐴 ∧ ((𝐵‘𝑗) ∈ 𝐴 ∧ (𝐵‘𝑖) ∈ 𝐴) ∧ (𝐵‘𝑗) < (𝐵‘𝑖)) → (𝐵‘𝑖) ≠ (𝐵‘𝑗)) |
| 56 | 39, 41, 53, 55 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → (𝐵‘𝑖) ≠ (𝐵‘𝑗)) |
| 57 | 56 | neneqd 2931 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ 𝑗 < 𝑖) → ¬ (𝐵‘𝑖) = (𝐵‘𝑗)) |
| 58 | 57 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → (𝑗 < 𝑖 → ¬ (𝐵‘𝑖) = (𝐵‘𝑗))) |
| 59 | 58 | con2d 134 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → ((𝐵‘𝑖) = (𝐵‘𝑗) → ¬ 𝑗 < 𝑖)) |
| 60 | 59 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ (𝐵‘𝑖) = (𝐵‘𝑗)) → ¬ 𝑗 < 𝑖) |
| 61 | 47 | zred 12569 |
. . . . . . . . . . 11
⊢ (𝑖 ∈
(0..^(♯‘𝐵))
→ 𝑖 ∈
ℝ) |
| 62 | 26 | zred 12569 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(0..^(♯‘𝐵))
→ 𝑗 ∈
ℝ) |
| 63 | 61, 62 | anim12i 613 |
. . . . . . . . . 10
⊢ ((𝑖 ∈
(0..^(♯‘𝐵))
∧ 𝑗 ∈
(0..^(♯‘𝐵)))
→ (𝑖 ∈ ℝ
∧ 𝑗 ∈
ℝ)) |
| 64 | 63 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) |
| 65 | 64 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ (𝐵‘𝑖) = (𝐵‘𝑗)) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) |
| 66 | | lttri4 11189 |
. . . . . . . 8
⊢ ((𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
| 67 | 65, 66 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ (𝐵‘𝑖) = (𝐵‘𝑗)) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
| 68 | | 3orcoma 1092 |
. . . . . . 7
⊢ ((𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖) ↔ (𝑖 = 𝑗 ∨ 𝑖 < 𝑗 ∨ 𝑗 < 𝑖)) |
| 69 | 67, 68 | sylib 218 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ (𝐵‘𝑖) = (𝐵‘𝑗)) → (𝑖 = 𝑗 ∨ 𝑖 < 𝑗 ∨ 𝑗 < 𝑖)) |
| 70 | 38, 60, 69 | ecase23d 1475 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) ∧ (𝐵‘𝑖) = (𝐵‘𝑗)) → 𝑖 = 𝑗) |
| 71 | 70 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^(♯‘𝐵)) ∧ 𝑗 ∈ (0..^(♯‘𝐵)))) → ((𝐵‘𝑖) = (𝐵‘𝑗) → 𝑖 = 𝑗)) |
| 72 | 71 | ralrimivva 3173 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝐵))∀𝑗 ∈ (0..^(♯‘𝐵))((𝐵‘𝑖) = (𝐵‘𝑗) → 𝑖 = 𝑗)) |
| 73 | 3, 72 | jca 511 |
. 2
⊢ (𝜑 → (𝐵:(0..^(♯‘𝐵))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐵))∀𝑗 ∈ (0..^(♯‘𝐵))((𝐵‘𝑖) = (𝐵‘𝑗) → 𝑖 = 𝑗))) |
| 74 | | dff13 7183 |
. 2
⊢ (𝐵:(0..^(♯‘𝐵))–1-1→𝐴 ↔ (𝐵:(0..^(♯‘𝐵))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐵))∀𝑗 ∈ (0..^(♯‘𝐵))((𝐵‘𝑖) = (𝐵‘𝑗) → 𝑖 = 𝑗))) |
| 75 | 73, 74 | sylibr 234 |
1
⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))–1-1→𝐴) |