| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1a | Structured version Visualization version GIF version | ||
| Description: The constant functor of 𝑋. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag1.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| diag1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag1.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| diag1.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| diag1a | ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | diag1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 5 | diag1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | diag1.k | . . 3 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 7 | diag1.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | diag1.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 9 | diag1.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag1 49315 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) |
| 11 | fconstmpt 5676 | . . 3 ⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) | |
| 12 | fconstmpt 5676 | . . . . 5 ⊢ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)) | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
| 14 | 13 | mpoeq3ia 7419 | . . 3 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)})) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
| 15 | 11, 14 | opeq12i 4828 | . 2 ⊢ 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉 |
| 16 | 10, 15 | eqtr4di 2783 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {csn 4574 〈cop 4580 ↦ cmpt 5170 × cxp 5612 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 Basecbs 17112 Hom chom 17164 Catccat 17562 Idccid 17563 Δfunccdiag 18110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-hom 17177 df-cco 17178 df-cat 17566 df-cid 17567 df-func 17757 df-nat 17845 df-fuc 17846 df-xpc 18070 df-1stf 18071 df-curf 18112 df-diag 18114 |
| This theorem is referenced by: diag1f1lem 49317 funcsetc1o 49508 idfudiag1bas 49535 idfudiag1 49536 diag1f1olem 49544 |
| Copyright terms: Public domain | W3C validator |