| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1a | Structured version Visualization version GIF version | ||
| Description: The constant functor of 𝑋. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag1.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| diag1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag1.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| diag1.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| diag1a | ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1.l | . . 3 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | diag1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 5 | diag1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | diag1.k | . . 3 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 7 | diag1.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | diag1.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 9 | diag1.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag1 49290 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) |
| 11 | fconstmpt 5700 | . . 3 ⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) | |
| 12 | fconstmpt 5700 | . . . . 5 ⊢ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)) | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
| 14 | 13 | mpoeq3ia 7467 | . . 3 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)})) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
| 15 | 11, 14 | opeq12i 4842 | . 2 ⊢ 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉 |
| 16 | 10, 15 | eqtr4di 2782 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦𝐽𝑧) × {( 1 ‘𝑋)}))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 Basecbs 17179 Hom chom 17231 Catccat 17625 Idccid 17626 Δfunccdiag 18173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-func 17820 df-nat 17908 df-fuc 17909 df-xpc 18133 df-1stf 18134 df-curf 18175 df-diag 18177 |
| This theorem is referenced by: diag1f1lem 49292 funcsetc1o 49483 idfudiag1bas 49510 idfudiag1 49511 diag1f1olem 49519 |
| Copyright terms: Public domain | W3C validator |