Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1lem Structured version   Visualization version   GIF version

Theorem diag1f1lem 49080
Description: The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. Note that (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌)) also holds because of diag1f1 49081 and f1fveq 7251. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
diag1f1.l 𝐿 = (𝐶Δfunc𝐷)
diag1f1.c (𝜑𝐶 ∈ Cat)
diag1f1.d (𝜑𝐷 ∈ Cat)
diag1f1.a 𝐴 = (Base‘𝐶)
diag1f1.b 𝐵 = (Base‘𝐷)
diag1f1.0 (𝜑𝐵 ≠ ∅)
diag1f1lem.x (𝜑𝑋𝐴)
diag1f1lem.y (𝜑𝑌𝐴)
diag1f1lem.m 𝑀 = ((1st𝐿)‘𝑋)
diag1f1lem.n 𝑁 = ((1st𝐿)‘𝑌)
Assertion
Ref Expression
diag1f1lem (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌))

Proof of Theorem diag1f1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1.l . . . 4 𝐿 = (𝐶Δfunc𝐷)
2 diag1f1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 diag1f1.d . . . 4 (𝜑𝐷 ∈ Cat)
4 diag1f1.a . . . 4 𝐴 = (Base‘𝐶)
5 diag1f1lem.x . . . 4 (𝜑𝑋𝐴)
6 diag1f1lem.m . . . 4 𝑀 = ((1st𝐿)‘𝑋)
7 diag1f1.b . . . 4 𝐵 = (Base‘𝐷)
8 eqid 2734 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2734 . . . 4 (Id‘𝐶) = (Id‘𝐶)
101, 2, 3, 4, 5, 6, 7, 8, 9diag1a 49079 . . 3 (𝜑𝑀 = ⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩)
11 diag1f1lem.y . . . 4 (𝜑𝑌𝐴)
12 diag1f1lem.n . . . 4 𝑁 = ((1st𝐿)‘𝑌)
131, 2, 3, 4, 11, 12, 7, 8, 9diag1a 49079 . . 3 (𝜑𝑁 = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩)
1410, 13eqeq12d 2750 . 2 (𝜑 → (𝑀 = 𝑁 ↔ ⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩))
157fvexi 6887 . . . . 5 𝐵 ∈ V
16 snex 5404 . . . . 5 {𝑋} ∈ V
1715, 16xpex 7742 . . . 4 (𝐵 × {𝑋}) ∈ V
1815, 15mpoex 8073 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)})) ∈ V
1917, 18opth1 5448 . . 3 (⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩ → (𝐵 × {𝑋}) = (𝐵 × {𝑌}))
20 diag1f1.0 . . . . 5 (𝜑𝐵 ≠ ∅)
21 xpcan 6163 . . . . 5 (𝐵 ≠ ∅ → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌}))
2220, 21syl 17 . . . 4 (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌}))
23 sneqrg 4813 . . . . 5 (𝑋𝐴 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
245, 23syl 17 . . . 4 (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
2522, 24sylbid 240 . . 3 (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) → 𝑋 = 𝑌))
2619, 25syl5 34 . 2 (𝜑 → (⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩ → 𝑋 = 𝑌))
2714, 26sylbid 240 1 (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wne 2931  c0 4306  {csn 4599  cop 4605   × cxp 5650  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  Basecbs 17215  Hom chom 17269  Catccat 17663  Idccid 17664  Δfunccdiag 18211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-hom 17282  df-cco 17283  df-cat 17667  df-cid 17668  df-func 17858  df-nat 17946  df-fuc 17947  df-xpc 18171  df-1stf 18172  df-curf 18213  df-diag 18215
This theorem is referenced by:  diag1f1  49081
  Copyright terms: Public domain W3C validator