| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1lem | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. Note that (𝜑 → (𝑀 = 𝑁 ↔ 𝑋 = 𝑌)) also holds because of diag1f1 49269 and f1fveq 7219. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag1f1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag1f1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag1f1.0 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| diag1f1lem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag1f1lem.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| diag1f1lem.m | ⊢ 𝑀 = ((1st ‘𝐿)‘𝑋) |
| diag1f1lem.n | ⊢ 𝑁 = ((1st ‘𝐿)‘𝑌) |
| Ref | Expression |
|---|---|
| diag1f1lem | ⊢ (𝜑 → (𝑀 = 𝑁 → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.l | . . . 4 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | diag1f1.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 5 | diag1f1lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | diag1f1lem.m | . . . 4 ⊢ 𝑀 = ((1st ‘𝐿)‘𝑋) | |
| 7 | diag1f1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag1a 49267 | . . 3 ⊢ (𝜑 → 𝑀 = 〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉) |
| 11 | diag1f1lem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 12 | diag1f1lem.n | . . . 4 ⊢ 𝑁 = ((1st ‘𝐿)‘𝑌) | |
| 13 | 1, 2, 3, 4, 11, 12, 7, 8, 9 | diag1a 49267 | . . 3 ⊢ (𝜑 → 𝑁 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉) |
| 14 | 10, 13 | eqeq12d 2745 | . 2 ⊢ (𝜑 → (𝑀 = 𝑁 ↔ 〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉)) |
| 15 | 7 | fvexi 6854 | . . . . 5 ⊢ 𝐵 ∈ V |
| 16 | snex 5386 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 17 | 15, 16 | xpex 7709 | . . . 4 ⊢ (𝐵 × {𝑋}) ∈ V |
| 18 | 15, 15 | mpoex 8037 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)})) ∈ V |
| 19 | 17, 18 | opth1 5430 | . . 3 ⊢ (〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉 → (𝐵 × {𝑋}) = (𝐵 × {𝑌})) |
| 20 | diag1f1.0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 21 | xpcan 6137 | . . . . 5 ⊢ (𝐵 ≠ ∅ → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌})) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌})) |
| 23 | sneqrg 4799 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) |
| 25 | 22, 24 | sylbid 240 | . . 3 ⊢ (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) → 𝑋 = 𝑌)) |
| 26 | 19, 25 | syl5 34 | . 2 ⊢ (𝜑 → (〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉 → 𝑋 = 𝑌)) |
| 27 | 14, 26 | sylbid 240 | 1 ⊢ (𝜑 → (𝑀 = 𝑁 → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 {csn 4585 〈cop 4591 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 Basecbs 17155 Hom chom 17207 Catccat 17601 Idccid 17602 Δfunccdiag 18149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-func 17796 df-nat 17884 df-fuc 17885 df-xpc 18109 df-1stf 18110 df-curf 18151 df-diag 18153 |
| This theorem is referenced by: diag1f1 49269 |
| Copyright terms: Public domain | W3C validator |