| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1lem | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. Note that (𝜑 → (𝑀 = 𝑁 ↔ 𝑋 = 𝑌)) also holds because of diag1f1 49278 and f1fveq 7239. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag1f1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag1f1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag1f1.0 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| diag1f1lem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag1f1lem.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| diag1f1lem.m | ⊢ 𝑀 = ((1st ‘𝐿)‘𝑋) |
| diag1f1lem.n | ⊢ 𝑁 = ((1st ‘𝐿)‘𝑌) |
| Ref | Expression |
|---|---|
| diag1f1lem | ⊢ (𝜑 → (𝑀 = 𝑁 → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.l | . . . 4 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | diag1f1.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 5 | diag1f1lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | diag1f1lem.m | . . . 4 ⊢ 𝑀 = ((1st ‘𝐿)‘𝑋) | |
| 7 | diag1f1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag1a 49276 | . . 3 ⊢ (𝜑 → 𝑀 = 〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉) |
| 11 | diag1f1lem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 12 | diag1f1lem.n | . . . 4 ⊢ 𝑁 = ((1st ‘𝐿)‘𝑌) | |
| 13 | 1, 2, 3, 4, 11, 12, 7, 8, 9 | diag1a 49276 | . . 3 ⊢ (𝜑 → 𝑁 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉) |
| 14 | 10, 13 | eqeq12d 2746 | . 2 ⊢ (𝜑 → (𝑀 = 𝑁 ↔ 〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉)) |
| 15 | 7 | fvexi 6874 | . . . . 5 ⊢ 𝐵 ∈ V |
| 16 | snex 5393 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 17 | 15, 16 | xpex 7731 | . . . 4 ⊢ (𝐵 × {𝑋}) ∈ V |
| 18 | 15, 15 | mpoex 8060 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)})) ∈ V |
| 19 | 17, 18 | opth1 5437 | . . 3 ⊢ (〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉 → (𝐵 × {𝑋}) = (𝐵 × {𝑌})) |
| 20 | diag1f1.0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 21 | xpcan 6151 | . . . . 5 ⊢ (𝐵 ≠ ∅ → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌})) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌})) |
| 23 | sneqrg 4805 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) |
| 25 | 22, 24 | sylbid 240 | . . 3 ⊢ (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) → 𝑋 = 𝑌)) |
| 26 | 19, 25 | syl5 34 | . 2 ⊢ (𝜑 → (〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉 → 𝑋 = 𝑌)) |
| 27 | 14, 26 | sylbid 240 | 1 ⊢ (𝜑 → (𝑀 = 𝑁 → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 {csn 4591 〈cop 4597 × cxp 5638 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1st c1st 7968 Basecbs 17185 Hom chom 17237 Catccat 17631 Idccid 17632 Δfunccdiag 18179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-nat 17914 df-fuc 17915 df-xpc 18139 df-1stf 18140 df-curf 18181 df-diag 18183 |
| This theorem is referenced by: diag1f1 49278 |
| Copyright terms: Public domain | W3C validator |