Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1lem Structured version   Visualization version   GIF version

Theorem diag1f1lem 49277
Description: The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. Note that (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌)) also holds because of diag1f1 49278 and f1fveq 7239. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
diag1f1.l 𝐿 = (𝐶Δfunc𝐷)
diag1f1.c (𝜑𝐶 ∈ Cat)
diag1f1.d (𝜑𝐷 ∈ Cat)
diag1f1.a 𝐴 = (Base‘𝐶)
diag1f1.b 𝐵 = (Base‘𝐷)
diag1f1.0 (𝜑𝐵 ≠ ∅)
diag1f1lem.x (𝜑𝑋𝐴)
diag1f1lem.y (𝜑𝑌𝐴)
diag1f1lem.m 𝑀 = ((1st𝐿)‘𝑋)
diag1f1lem.n 𝑁 = ((1st𝐿)‘𝑌)
Assertion
Ref Expression
diag1f1lem (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌))

Proof of Theorem diag1f1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1.l . . . 4 𝐿 = (𝐶Δfunc𝐷)
2 diag1f1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 diag1f1.d . . . 4 (𝜑𝐷 ∈ Cat)
4 diag1f1.a . . . 4 𝐴 = (Base‘𝐶)
5 diag1f1lem.x . . . 4 (𝜑𝑋𝐴)
6 diag1f1lem.m . . . 4 𝑀 = ((1st𝐿)‘𝑋)
7 diag1f1.b . . . 4 𝐵 = (Base‘𝐷)
8 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
101, 2, 3, 4, 5, 6, 7, 8, 9diag1a 49276 . . 3 (𝜑𝑀 = ⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩)
11 diag1f1lem.y . . . 4 (𝜑𝑌𝐴)
12 diag1f1lem.n . . . 4 𝑁 = ((1st𝐿)‘𝑌)
131, 2, 3, 4, 11, 12, 7, 8, 9diag1a 49276 . . 3 (𝜑𝑁 = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩)
1410, 13eqeq12d 2746 . 2 (𝜑 → (𝑀 = 𝑁 ↔ ⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩))
157fvexi 6874 . . . . 5 𝐵 ∈ V
16 snex 5393 . . . . 5 {𝑋} ∈ V
1715, 16xpex 7731 . . . 4 (𝐵 × {𝑋}) ∈ V
1815, 15mpoex 8060 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)})) ∈ V
1917, 18opth1 5437 . . 3 (⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩ → (𝐵 × {𝑋}) = (𝐵 × {𝑌}))
20 diag1f1.0 . . . . 5 (𝜑𝐵 ≠ ∅)
21 xpcan 6151 . . . . 5 (𝐵 ≠ ∅ → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌}))
2220, 21syl 17 . . . 4 (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌}))
23 sneqrg 4805 . . . . 5 (𝑋𝐴 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
245, 23syl 17 . . . 4 (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
2522, 24sylbid 240 . . 3 (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) → 𝑋 = 𝑌))
2619, 25syl5 34 . 2 (𝜑 → (⟨(𝐵 × {𝑋}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨(𝐵 × {𝑌}), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))⟩ → 𝑋 = 𝑌))
2714, 26sylbid 240 1 (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2926  c0 4298  {csn 4591  cop 4597   × cxp 5638  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  Basecbs 17185  Hom chom 17237  Catccat 17631  Idccid 17632  Δfunccdiag 18179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-nat 17914  df-fuc 17915  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183
This theorem is referenced by:  diag1f1  49278
  Copyright terms: Public domain W3C validator