| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag1f1lem | Structured version Visualization version GIF version | ||
| Description: The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. Note that (𝜑 → (𝑀 = 𝑁 ↔ 𝑋 = 𝑌)) also holds because of diag1f1 49081 and f1fveq 7251. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag1f1.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag1f1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| diag1f1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| diag1f1.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag1f1.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag1f1.0 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| diag1f1lem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag1f1lem.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| diag1f1lem.m | ⊢ 𝑀 = ((1st ‘𝐿)‘𝑋) |
| diag1f1lem.n | ⊢ 𝑁 = ((1st ‘𝐿)‘𝑌) |
| Ref | Expression |
|---|---|
| diag1f1lem | ⊢ (𝜑 → (𝑀 = 𝑁 → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.l | . . . 4 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 2 | diag1f1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | diag1f1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | diag1f1.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 5 | diag1f1lem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | diag1f1lem.m | . . . 4 ⊢ 𝑀 = ((1st ‘𝐿)‘𝑋) | |
| 7 | diag1f1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | eqid 2734 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | diag1a 49079 | . . 3 ⊢ (𝜑 → 𝑀 = 〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉) |
| 11 | diag1f1lem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 12 | diag1f1lem.n | . . . 4 ⊢ 𝑁 = ((1st ‘𝐿)‘𝑌) | |
| 13 | 1, 2, 3, 4, 11, 12, 7, 8, 9 | diag1a 49079 | . . 3 ⊢ (𝜑 → 𝑁 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉) |
| 14 | 10, 13 | eqeq12d 2750 | . 2 ⊢ (𝜑 → (𝑀 = 𝑁 ↔ 〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉)) |
| 15 | 7 | fvexi 6887 | . . . . 5 ⊢ 𝐵 ∈ V |
| 16 | snex 5404 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 17 | 15, 16 | xpex 7742 | . . . 4 ⊢ (𝐵 × {𝑋}) ∈ V |
| 18 | 15, 15 | mpoex 8073 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)})) ∈ V |
| 19 | 17, 18 | opth1 5448 | . . 3 ⊢ (〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉 → (𝐵 × {𝑋}) = (𝐵 × {𝑌})) |
| 20 | diag1f1.0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 21 | xpcan 6163 | . . . . 5 ⊢ (𝐵 ≠ ∅ → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌})) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) ↔ {𝑋} = {𝑌})) |
| 23 | sneqrg 4813 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) | |
| 24 | 5, 23 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) |
| 25 | 22, 24 | sylbid 240 | . . 3 ⊢ (𝜑 → ((𝐵 × {𝑋}) = (𝐵 × {𝑌}) → 𝑋 = 𝑌)) |
| 26 | 19, 25 | syl5 34 | . 2 ⊢ (𝜑 → (〈(𝐵 × {𝑋}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑋)}))〉 = 〈(𝐵 × {𝑌}), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Hom ‘𝐷)𝑦) × {((Id‘𝐶)‘𝑌)}))〉 → 𝑋 = 𝑌)) |
| 27 | 14, 26 | sylbid 240 | 1 ⊢ (𝜑 → (𝑀 = 𝑁 → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4306 {csn 4599 〈cop 4605 × cxp 5650 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 1st c1st 7981 Basecbs 17215 Hom chom 17269 Catccat 17663 Idccid 17664 Δfunccdiag 18211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-slot 17188 df-ndx 17200 df-base 17216 df-hom 17282 df-cco 17283 df-cat 17667 df-cid 17668 df-func 17858 df-nat 17946 df-fuc 17947 df-xpc 18171 df-1stf 18172 df-curf 18213 df-diag 18215 |
| This theorem is referenced by: diag1f1 49081 |
| Copyright terms: Public domain | W3C validator |