Proof of Theorem diag1
| Step | Hyp | Ref
| Expression |
| 1 | | relfunc 17879 |
. . 3
⊢ Rel
(𝐷 Func 𝐶) |
| 2 | | diag1.l |
. . . 4
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 3 | | diag1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 4 | | diag1.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | | diag1.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
| 6 | | diag1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 7 | | diag1.k |
. . . 4
⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| 8 | 2, 3, 4, 5, 6, 7 | diag1cl 18258 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) |
| 9 | | 1st2nd 8046 |
. . 3
⊢ ((Rel
(𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 10 | 1, 8, 9 | sylancr 587 |
. 2
⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 11 | | diag1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
| 12 | | 1st2ndbr 8049 |
. . . . . . 7
⊢ ((Rel
(𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
| 13 | 1, 8, 12 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
| 14 | 11, 5, 13 | funcf1 17883 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐾):𝐵⟶𝐴) |
| 15 | 14 | feqmptd 6957 |
. . . 4
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ ((1st ‘𝐾)‘𝑦))) |
| 16 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 17 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) |
| 18 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
| 19 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 20 | 2, 16, 17, 5, 18, 7, 11, 19 | diag11 18259 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = 𝑋) |
| 21 | 20 | mpteq2dva 5222 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ((1st ‘𝐾)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 22 | 15, 21 | eqtrd 2769 |
. . 3
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 23 | 11, 13 | funcfn2 17886 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐾) Fn (𝐵 × 𝐵)) |
| 24 | | fnov 7546 |
. . . . 5
⊢
((2nd ‘𝐾) Fn (𝐵 × 𝐵) ↔ (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑦(2nd ‘𝐾)𝑧))) |
| 25 | 23, 24 | sylib 218 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑦(2nd ‘𝐾)𝑧))) |
| 26 | | diag1.j |
. . . . . . . 8
⊢ 𝐽 = (Hom ‘𝐷) |
| 27 | | eqid 2734 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 28 | 13 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (1st ‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
| 29 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 30 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 31 | 11, 26, 27, 28, 29, 30 | funcf2 17885 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(2nd ‘𝐾)𝑧):(𝑦𝐽𝑧)⟶(((1st ‘𝐾)‘𝑦)(Hom ‘𝐶)((1st ‘𝐾)‘𝑧))) |
| 32 | 31 | feqmptd 6957 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(2nd ‘𝐾)𝑧) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ((𝑦(2nd ‘𝐾)𝑧)‘𝑓))) |
| 33 | | simpl1 1191 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝜑) |
| 34 | 33, 3 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝐶 ∈ Cat) |
| 35 | 33, 4 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝐷 ∈ Cat) |
| 36 | 33, 6 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑋 ∈ 𝐴) |
| 37 | 29 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑦 ∈ 𝐵) |
| 38 | | diag1.i |
. . . . . . . 8
⊢ 1 =
(Id‘𝐶) |
| 39 | 30 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑧 ∈ 𝐵) |
| 40 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑓 ∈ (𝑦𝐽𝑧)) |
| 41 | 2, 34, 35, 5, 36, 7, 11, 37, 26, 38, 39, 40 | diag12 18260 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑓) = ( 1 ‘𝑋)) |
| 42 | 41 | mpteq2dva 5222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑓 ∈ (𝑦𝐽𝑧) ↦ ((𝑦(2nd ‘𝐾)𝑧)‘𝑓)) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
| 43 | 32, 42 | eqtrd 2769 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(2nd ‘𝐾)𝑧) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
| 44 | 43 | mpoeq3dva 7492 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑦(2nd ‘𝐾)𝑧)) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))) |
| 45 | 25, 44 | eqtrd 2769 |
. . 3
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))) |
| 46 | 22, 45 | opeq12d 4861 |
. 2
⊢ (𝜑 → 〈(1st
‘𝐾), (2nd
‘𝐾)〉 =
〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) |
| 47 | 10, 46 | eqtrd 2769 |
1
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) |