Proof of Theorem diag1
Step | Hyp | Ref
| Expression |
1 | | relfunc 17903 |
. . 3
⊢ Rel
(𝐷 Func 𝐶) |
2 | | diag1.l |
. . . 4
⊢ 𝐿 = (𝐶Δfunc𝐷) |
3 | | diag1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
4 | | diag1.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
5 | | diag1.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
6 | | diag1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
7 | | diag1.k |
. . . 4
⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
8 | 2, 3, 4, 5, 6, 7 | diag1cl 18283 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) |
9 | | 1st2nd 8060 |
. . 3
⊢ ((Rel
(𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
10 | 1, 8, 9 | sylancr 587 |
. 2
⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
11 | | diag1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
12 | | 1st2ndbr 8063 |
. . . . . . 7
⊢ ((Rel
(𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
13 | 1, 8, 12 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
14 | 11, 5, 13 | funcf1 17907 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐾):𝐵⟶𝐴) |
15 | 14 | feqmptd 6975 |
. . . 4
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ ((1st ‘𝐾)‘𝑦))) |
16 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
17 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) |
18 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
19 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
20 | 2, 16, 17, 5, 18, 7, 11, 19 | diag11 18284 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = 𝑋) |
21 | 20 | mpteq2dva 5240 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ((1st ‘𝐾)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
22 | 15, 21 | eqtrd 2776 |
. . 3
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
23 | 11, 13 | funcfn2 17910 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐾) Fn (𝐵 × 𝐵)) |
24 | | fnov 7561 |
. . . . 5
⊢
((2nd ‘𝐾) Fn (𝐵 × 𝐵) ↔ (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑦(2nd ‘𝐾)𝑧))) |
25 | 23, 24 | sylib 218 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑦(2nd ‘𝐾)𝑧))) |
26 | | diag1.j |
. . . . . . . 8
⊢ 𝐽 = (Hom ‘𝐷) |
27 | | eqid 2736 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
28 | 13 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (1st ‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
29 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
30 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
31 | 11, 26, 27, 28, 29, 30 | funcf2 17909 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(2nd ‘𝐾)𝑧):(𝑦𝐽𝑧)⟶(((1st ‘𝐾)‘𝑦)(Hom ‘𝐶)((1st ‘𝐾)‘𝑧))) |
32 | 31 | feqmptd 6975 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(2nd ‘𝐾)𝑧) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ((𝑦(2nd ‘𝐾)𝑧)‘𝑓))) |
33 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝜑) |
34 | 33, 3 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝐶 ∈ Cat) |
35 | 33, 4 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝐷 ∈ Cat) |
36 | 33, 6 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑋 ∈ 𝐴) |
37 | 29 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑦 ∈ 𝐵) |
38 | | diag1.i |
. . . . . . . 8
⊢ 1 =
(Id‘𝐶) |
39 | 30 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑧 ∈ 𝐵) |
40 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → 𝑓 ∈ (𝑦𝐽𝑧)) |
41 | 2, 34, 35, 5, 36, 7, 11, 37, 26, 38, 39, 40 | diag12 18285 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑓 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑓) = ( 1 ‘𝑋)) |
42 | 41 | mpteq2dva 5240 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑓 ∈ (𝑦𝐽𝑧) ↦ ((𝑦(2nd ‘𝐾)𝑧)‘𝑓)) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
43 | 32, 42 | eqtrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(2nd ‘𝐾)𝑧) = (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋))) |
44 | 43 | mpoeq3dva 7508 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑦(2nd ‘𝐾)𝑧)) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))) |
45 | 25, 44 | eqtrd 2776 |
. . 3
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))) |
46 | 22, 45 | opeq12d 4879 |
. 2
⊢ (𝜑 → 〈(1st
‘𝐾), (2nd
‘𝐾)〉 =
〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) |
47 | 10, 46 | eqtrd 2776 |
1
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ 𝑋), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1 ‘𝑋)))〉) |