MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fllep1 Structured version   Visualization version   GIF version

Theorem fllep1 13025
Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
fllep1 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))

Proof of Theorem fllep1
StepHypRef Expression
1 flltp1 13024 . 2 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
2 reflcl 13020 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
3 peano2re 10666 . . . 4 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
42, 3syl 17 . . 3 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
5 ltle 10582 . . 3 ((𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → (𝐴 < ((⌊‘𝐴) + 1) → 𝐴 ≤ ((⌊‘𝐴) + 1)))
64, 5mpdan 683 . 2 (𝐴 ∈ ℝ → (𝐴 < ((⌊‘𝐴) + 1) → 𝐴 ≤ ((⌊‘𝐴) + 1)))
71, 6mpd 15 1 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2083   class class class wbr 4968  cfv 6232  (class class class)co 7023  cr 10389  1c1 10391   + caddc 10393   < clt 10528  cle 10529  cfl 13014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-z 11836  df-uz 12098  df-fl 13016
This theorem is referenced by:  uzsup  13085  rddif  14538  rexuzre  14550  limsupgre  14676  rlimclim1  14740  o1fsum  15005  vdwnnlem3  16166  ovoliunlem2  23791  mbfi1fseqlem6  24008  dvfsumlem2  24311  dvfsumlem3  24312  harmoniclbnd  25272  harmonicbnd4  25274  logfaclbnd  25484  chtppilimlem1  25735  dchrisumlema  25750  dchrisumlem3  25753  dchrisum0lem1  25778  selberg2lem  25812  pntrsumo1  25827  pntpbnd2  25849  pntlemg  25860  pntlemr  25864  pntlemj  25865  minvecolem4  28344  dstfrvunirn  31345  dnibndlem10  33437  knoppndvlem19  33480  ltflcei  34432  itg2addnclem3  34497  irrapxlem4  38928  irrapxlem5  38929
  Copyright terms: Public domain W3C validator