Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumm1 | Structured version Visualization version GIF version |
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
fsumm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumm1.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsumm1 | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumm1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 12685 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
4 | fzsn 13391 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
6 | 5 | ineq2d 4158 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ((𝑀...(𝑁 − 1)) ∩ {𝑁})) |
7 | 3 | zred 12519 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
8 | 7 | ltm1d 12000 | . . . . 5 ⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
9 | fzdisj 13376 | . . . . 5 ⊢ ((𝑁 − 1) < 𝑁 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅) |
11 | 6, 10 | eqtr3d 2778 | . . 3 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
12 | eluzel2 12680 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
13 | 1, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | peano2zm 12456 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
16 | 13 | zcnd 12520 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
17 | ax-1cn 11022 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
18 | npcan 11323 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
19 | 16, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
20 | 19 | fveq2d 6823 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
21 | 1, 20 | eleqtrrd 2840 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) |
22 | eluzp1m1 12701 | . . . . . . 7 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) | |
23 | 15, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) |
24 | fzsuc2 13407 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
25 | 13, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
26 | 3 | zcnd 12520 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
27 | npcan 11323 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
28 | 26, 17, 27 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
29 | 28 | oveq2d 7345 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
30 | 25, 29 | eqtr3d 2778 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = (𝑀...𝑁)) |
31 | 28 | sneqd 4584 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
32 | 31 | uneq2d 4109 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
33 | 30, 32 | eqtr3d 2778 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
34 | fzfid 13786 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
35 | fsumm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
36 | 11, 33, 34, 35 | fsumsplit 15544 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴)) |
37 | fsumm1.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
38 | 37 | eleq1d 2821 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
39 | 35 | ralrimiva 3139 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
40 | eluzfz2 13357 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
41 | 1, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
42 | 38, 39, 41 | rspcdva 3571 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
43 | 37 | sumsn 15549 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵) |
44 | 1, 42, 43 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵) |
45 | 44 | oveq2d 7345 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
46 | 36, 45 | eqtrd 2776 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∪ cun 3895 ∩ cin 3896 ∅c0 4268 {csn 4572 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 1c1 10965 + caddc 10967 < clt 11102 − cmin 11298 ℤcz 12412 ℤ≥cuz 12675 ...cfz 13332 Σcsu 15488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-sum 15489 |
This theorem is referenced by: fzosump1 15555 fsump1 15559 telfsumo 15605 fsumparts 15609 binom1dif 15636 pwdif 15671 bpolysum 15854 bpolydiflem 15855 pwp1fsum 16191 prmreclem4 16709 ovolicc2lem4 24782 dvfsumlem1 25288 abelthlem6 25693 log2ublem2 26195 harmonicbnd4 26258 ftalem1 26320 ftalem5 26324 chpp1 26402 1sgmprm 26445 chtublem 26457 logdivbnd 26802 pntrlog2bndlem1 26823 knoppndvlem15 34797 mettrifi 36013 sticksstones12a 40363 sticksstones12 40364 fzosumm1 40463 stoweidlem17 43883 nnsum4primeseven 45592 nnsum4primesevenALTV 45593 |
Copyright terms: Public domain | W3C validator |