| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumm1 | Structured version Visualization version GIF version | ||
| Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| fsumm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumm1.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fsumm1 | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumm1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzelz 12742 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 4 | fzsn 13466 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
| 6 | 5 | ineq2d 4167 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ((𝑀...(𝑁 − 1)) ∩ {𝑁})) |
| 7 | 3 | zred 12577 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 8 | 7 | ltm1d 12054 | . . . . 5 ⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
| 9 | fzdisj 13451 | . . . . 5 ⊢ ((𝑁 − 1) < 𝑁 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅) |
| 11 | 6, 10 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
| 12 | eluzel2 12737 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 13 | 1, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 14 | peano2zm 12515 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
| 16 | 13 | zcnd 12578 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 17 | ax-1cn 11064 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 18 | npcan 11369 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
| 20 | 19 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝜑 → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
| 21 | 1, 20 | eleqtrrd 2834 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) |
| 22 | eluzp1m1 12758 | . . . . . . 7 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) | |
| 23 | 15, 21, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) |
| 24 | fzsuc2 13482 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
| 25 | 13, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 26 | 3 | zcnd 12578 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | npcan 11369 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 28 | 26, 17, 27 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 29 | 28 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
| 30 | 25, 29 | eqtr3d 2768 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = (𝑀...𝑁)) |
| 31 | 28 | sneqd 4585 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
| 32 | 31 | uneq2d 4115 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
| 33 | 30, 32 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
| 34 | fzfid 13880 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
| 35 | fsumm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 36 | 11, 33, 34, 35 | fsumsplit 15648 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴)) |
| 37 | fsumm1.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
| 38 | 37 | eleq1d 2816 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 39 | 35 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 40 | eluzfz2 13432 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 41 | 1, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 42 | 38, 39, 41 | rspcdva 3573 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 43 | 37 | sumsn 15653 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵) |
| 44 | 1, 42, 43 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵) |
| 45 | 44 | oveq2d 7362 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
| 46 | 36, 45 | eqtrd 2766 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: fzosump1 15659 fsump1 15663 telfsumo 15709 fsumparts 15713 binom1dif 15740 pwdif 15775 bpolysum 15960 bpolydiflem 15961 pwp1fsum 16302 prmreclem4 16831 ovolicc2lem4 25448 dvfsumlem1 25959 abelthlem6 26373 log2ublem2 26884 harmonicbnd4 26948 ftalem1 27010 ftalem5 27014 chpp1 27092 1sgmprm 27137 chtublem 27149 logdivbnd 27494 pntrlog2bndlem1 27515 knoppndvlem15 36570 mettrifi 37807 sticksstones12a 42260 sticksstones12 42261 fzosumm1 42353 fz1sump1 42413 stoweidlem17 46125 nnsum4primeseven 47910 nnsum4primesevenALTV 47911 |
| Copyright terms: Public domain | W3C validator |