MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumm1 Structured version   Visualization version   GIF version

Theorem fsumm1 14765
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fsumm1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 11896 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4 fzsn 12590 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4syl 17 . . . . 5 (𝜑 → (𝑁...𝑁) = {𝑁})
65ineq2d 3976 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ((𝑀...(𝑁 − 1)) ∩ {𝑁}))
73zred 11729 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87ltm1d 11210 . . . . 5 (𝜑 → (𝑁 − 1) < 𝑁)
9 fzdisj 12575 . . . . 5 ((𝑁 − 1) < 𝑁 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
108, 9syl 17 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
116, 10eqtr3d 2801 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 11891 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
131, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
14 peano2zm 11667 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 11730 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
17 ax-1cn 10247 . . . . . . . . . 10 1 ∈ ℂ
18 npcan 10544 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
1916, 17, 18sylancl 580 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
2019fveq2d 6379 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
211, 20eleqtrrd 2847 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
22 eluzp1m1 11910 . . . . . . 7 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2315, 21, 22syl2anc 579 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
24 fzsuc2 12605 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2513, 23, 24syl2anc 579 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
263zcnd 11730 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 npcan 10544 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2826, 17, 27sylancl 580 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2928oveq2d 6858 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3025, 29eqtr3d 2801 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = (𝑀...𝑁))
3128sneqd 4346 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
3231uneq2d 3929 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
3330, 32eqtr3d 2801 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
34 fzfid 12980 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
35 fsumm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3611, 33, 34, 35fsumsplit 14756 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴))
37 fsumm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
3837eleq1d 2829 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
3935ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
40 eluzfz2 12556 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
411, 40syl 17 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
4238, 39, 41rspcdva 3467 . . . 4 (𝜑𝐵 ∈ ℂ)
4337sumsn 14760 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
441, 42, 43syl2anc 579 . . 3 (𝜑 → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
4544oveq2d 6858 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
4636, 45eqtrd 2799 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cun 3730  cin 3731  c0 4079  {csn 4334   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  1c1 10190   + caddc 10192   < clt 10328  cmin 10520  cz 11624  cuz 11886  ...cfz 12533  Σcsu 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702
This theorem is referenced by:  fzosump1  14766  fsump1  14772  telfsumo  14818  fsumparts  14822  binom1dif  14849  bpolysum  15066  bpolydiflem  15067  pwp1fsum  15396  prmreclem4  15902  ovolicc2lem4  23578  dvfsumlem1  24080  abelthlem6  24481  log2ublem2  24965  harmonicbnd4  25028  ftalem1  25090  ftalem5  25094  chpp1  25172  1sgmprm  25215  chtublem  25227  logdivbnd  25536  pntrlog2bndlem1  25557  knoppndvlem15  32956  mettrifi  33975  stoweidlem17  40871  pwdif  42177  nnsum4primeseven  42364  nnsum4primesevenALTV  42365
  Copyright terms: Public domain W3C validator